File: Rampart1.R

package info (click to toggle)
r-cran-openmx 2.21.1%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 14,412 kB
  • sloc: cpp: 36,577; ansic: 13,811; fortran: 2,001; sh: 1,440; python: 350; perl: 21; makefile: 5
file content (166 lines) | stat: -rw-r--r-- 5,092 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
# This is the original test case that Timo & I wrote back in Spring 2013.

#options(error = utils::recover)   # uncomment for more help with debugging
library(OpenMx)
library(mvtnorm)

#mxOption(key="Parallel diagnostics", value = "Yes")

set.seed(1)

more.noise <- 0
#more.noise <- 1

gen.data <- function(n) {
  data.cov <- matrix(c(1, .2, .2, 1), byrow=TRUE, nrow=2)
  latent <- rmvnorm(n, mean=c(0,0), sigma=data.cov)
  colnames(latent) <- c("A","B")
  latent <- as.data.frame(latent)
  df <- data.frame(C=latent$A + latent$B,
                   D=latent$A - latent$B)
  if (more.noise) {
    df$C <- df$C + rnorm(1, sd=more.noise)
    df$D <- df$D + rnorm(1, sd=more.noise)
  }
  df
}

fanout <- 5

school.data <- cbind(id=1:fanout, gen.data(fanout))
#school.data$C <- school.data$id * 1000
teacher.data <- cbind(schoolId=1:fanout, id=seq(1,fanout^2),
		      gen.data(fanout^2))
#teacher.data$C <- teacher.data$id * 100
student.data <- cbind(teacherId=seq(1,fanout^2),
		      id=seq(1,fanout^3), gen.data(fanout^3))

stack.data <- function(key, upper, lower) {
	for (pk in upper$id) {
		mask <- lower[[key]] == pk
		for (col in c('C','D')) {
			lower[mask, col] <-
				lower[mask, col] + upper[upper$id == pk, 'C']
		}
	}
	lower
}
teacher.data <- stack.data("schoolId", school.data, teacher.data)
student.data <- stack.data("teacherId", teacher.data, student.data)

manifests<-c("C","D")
latents<-c("A","B")
student <- mxModel(
    "student", type="RAM",
    manifestVars = manifests,
    latentVars = latents,
    mxPath(from="A",to=c("C","D"), free=c(FALSE,FALSE),
	   value=c(1,1), arrows=1,
	   label=c("A_TO_C","A_TO_D") ),
    mxPath(from="B",to=c("C","D"), free=c(FALSE,FALSE), value=c(1,-1) ,
	   arrows=1, label=c("B_TO_C","B_TO_D") ),
    mxPath(from="A",to=c("A","B"), free=c(TRUE,TRUE),
	   value=c(1,0), arrows=2,
	   label=c("VAR_A","COV_A_B") ),
    mxPath(from="B",to=c("B"), free=c(TRUE), value=c(1) , arrows=2,
	   label=c("VAR_B") ),
    mxPath(from="C",to=c("C"), free=as.logical(more.noise),
	   value=more.noise, arrows=2, label=c("VAR_C") ),
    mxPath(from="D",to=c("D"), free=as.logical(more.noise),
	   value=more.noise, arrows=2, label=c("VAR_D") ),
    mxPath(from="one", to=c(manifests, latents), value=0, free=FALSE)
);

relabel <- function(m, prefix) {
  for (mat in c("A","S")) {
    lab <- m[[mat]]$labels
    lab[!is.na(lab)] <- paste0(prefix, lab[!is.na(lab)])
    m[[mat]]$labels <- lab
  }
  m
}

teacher <- relabel(mxModel(student, name="teacher"), "tea_")
school <- relabel(mxModel(student, name="school"), "sch_")
student <- relabel(student, "st_")

school <- mxModel(
    school,
    mxData(school.data, type="raw", primaryKey="id"))

teacher <- mxModel(
    teacher, school,
    mxData(teacher.data, type="raw", primaryKey="id"),
    mxPath('school.C', 'A', free=FALSE, value=1, joinKey="schoolId"))

student <- mxModel(
    student, teacher,
    mxData(student.data, type="raw", primaryKey="id"),
    mxPath('teacher.C', 'A', free=FALSE, value=1, joinKey="teacherId"))

#student$expectation$verbose <- 1L

student$expectation$.rampartCycleLimit <- 0L
pt1 <- mxRun(mxModel(
    student,
    mxComputeSequence(list(
	mxComputeOnce('fitfunction', 'fit'),
	mxComputeNumericDeriv(checkGradient=FALSE,
			      iterations=2, hessian=FALSE),
	mxComputeReportDeriv(),
	mxComputeReportExpectation()))))

student$expectation$.rampartCycleLimit <- as.integer(NA)
pt2 <- mxRun(mxModel(
    student,
    mxComputeSequence(list(
	mxComputeOnce('fitfunction', 'fit'),
	mxComputeNumericDeriv(checkGradient=FALSE,
			      iterations=2, hessian=FALSE),
	mxComputeReportDeriv(),
	mxComputeReportExpectation()))))

omxCheckCloseEnough(pt2$expectation$debug$rampartUsage,
		    c((fanout-1)*fanout^2, (fanout-1)*fanout), 1)
omxCheckCloseEnough(pt2$expectation$debug$numGroups, 3)

if (0) {
	layout <- pt2$expectation$debug$layout
	head(layout[layout$group==3, ],n=20)
}

omxCheckCloseEnough(pt1$output$fit, pt2$output$fit, 1e-7)
omxCheckCloseEnough(pt1$output$gradient, pt2$output$gradient, 1e-2)

student <- mxRun(student)
if (!more.noise) {
	omxCheckCloseEnough(student$output$fit, 1055.161, 1e-2)
} else {
	omxCheckCloseEnough(student$output$fit, 1132.713, 1e-2)  # but code RED
}
#print(student$expectation$debug$rampartUsage)

if (.Platform$OS.type != 'windows' && parallel::detectCores() > 1) {
	omxCheckTrue(student$compute$steps[['GD']]$output$maxThreads > 1)
}

if (0) {
	ex <- student$expectation
	eo = ex$output
	ed = ex$debug
	ed$layout
}

got <- mxGenerateData(student)
omxCheckTrue(setequal(names(got), c("school", "teacher", "student")))
omxCheckTrue(setequal(colnames(got[['school']]),
                      colnames(student$school$data$observed)))
omxCheckTrue(all(got[['school']]$C != student$school$data$observed$C))

omxCheckError(mxGenerateData(student, 10, returnModel=TRUE),
	      paste("Specification of the number of rows",
		    "is not supported for relational models"))

got <- mxGenerateData(student, returnModel=TRUE)
omxCheckTrue(is(got, "MxModel"))
omxCheckTrue(all(got$school$data$observed$C != student$school$data$observed$C))