1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247
|
#
# Copyright 2007-2019 by the individuals mentioned in the source code history
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#--------------------------------------------------------------------
# Author: Michael D. Hunter
# Date: 2014.02.17
# Filename: StateSpaceInputs.R
# Purpose: Test the state space expectation with Inputs.
# Note that the estimates here are only compared to the previous
# estimates produced by this same program. So the ground truth is
# somewhat circular. However, the estimates correspond quite nicely
# to the true generating parameters. In fact, these estimates are
# even better than those of the same model without inputs.
# Cf. StateSpaceOsc.R
#--------------------------------------------------------------------
#--------------------------------------------------------------------
# Revision History
# Thu Dec 06 18:59:04 Central Standard Time 2012 -- Michael Hunter Checked in file to models/failing
# Thu 14 Feb 2013 15:52:57 Central Standard Time -- Michael Hunter realized the model actually worked.
# Thu 13 Feb 2014 15:06:58 Central Standard Time -- Michael Hunter removed mxConstraint and used parameter equal to result of mxAlgebra instead.
# Mon 17 Feb 2014 19:30:07 Central Standard Time -- Michael Hunter added inputs and created file from StateSpaceOsc.R
# Thu 20 Mar 2014 16:00:34 Central Daylight Time -- Michael Hunter added estimated value checking against previous estimates.
#
#--------------------------------------------------------------------
# Load required packages
require(OpenMx)
require(mvtnorm) # used to generate data
#require(dlm) # only used if model is estimated with dlm for comparison
#--------------------------------------------------------------------
# Generate Data
xdim <- 3
udim <- 2
ydim <- 9
tdim <- 200
set.seed(2227)
tA <- matrix(c(-.4, 0, 0, 0, -.9, .1, 0, -.1, -.9), xdim, xdim)
tB <- matrix(c(3.1, 2.7, -2.5, 0, 0, 0), xdim, udim)
tC <- matrix(c(runif(3, .4, 1), rep(0, ydim), runif(3, .4, 1), rep(0, ydim), runif(3, .4, 1)), ydim, xdim)
tD <- matrix(c(rep(0, ydim), rep(.2, ydim)), ydim, udim)
tQ <- matrix(c(0), xdim, xdim); diag(tQ) <- runif(xdim)
tR <- matrix(c(0), ydim, ydim); diag(tR) <- runif(ydim)
x0 <- matrix(c(rnorm(xdim)), xdim, 1)
P0 <- diag(c(runif(xdim)))
tx <- matrix(0, xdim, tdim+1)
#tu <- matrix(rnorm(udim*tdim), udim, tdim) # Note: Random inputs!
tu <- matrix(c(rep(1, tdim), rnorm(tdim)), udim, tdim, byrow=TRUE) # Note: Constant and random inputs
ty <- matrix(0, ydim, tdim)
tx[,1] <- x0
#for(i in 1:tdim){
# tx[,i+1] <- tA %*% tx[,i] + tB %*% tu[,i] + t(rmvnorm(1, rep(0, xdim), tQ))
# ty[,i] <- tC %*% tx[,i] + tD %*% tu[,i] + t(rmvnorm(1, rep(0, ydim), tR))
#}
for(i in 2:(tdim+1)){
tx[,i] <- tA %*% tx[,i-1] + tB %*% tu[,i-1] + t(rmvnorm(1, rep(0, xdim), tQ))
ty[,i-1] <- tC %*% tx[,i] + tD %*% tu[,i-1] + t(rmvnorm(1, rep(0, ydim), tR))
}
#plot(tx[1,], type='l')
rownames(ty) <- paste('y', 1:ydim, sep='')
rownames(tu) <- paste('u', 1:udim, sep='')
rownames(tx) <- paste('x', 1:xdim, sep='')
#--------------------------------------------------------------------
# Fit state space model to data via dlm package
# For posterity show how the same model would be estimated in the dlm package.
# This is how the values I validated the estimation for OpenMx,
# i.e. by comparing the estimates from dlm and OpenMx.
# Note that in my (mhunter) experience OpenMx is much faster (25x in this example).
#mfun <- function(x){
# mG <- matrix(c(x[1], 0, 0, 0, x[2], x[3], 0, -x[3], x[2]), xdim, xdim)
# mW <- tQ # diag(x[4:6])
# mF <- matrix(c(x[7:9], rep(0, ydim), x[10:12], rep(0, ydim), x[13:15]), ydim, xdim)
# mV <- diag(x[16:24])
# mM <- x0
# mC <- P0
# return(dlm(FF=mF, V=mV, GG=mG, W=mW, m0=mM, C0=mC))
#}
#tinit <- c(-.4, -.9, .1, diag(tQ), tC[tC!=0], diag(tR))
#mfun(tinit)
#dlmBegin <- Sys.time()
#mfit <- dlmMLE(y=t(ty), parm=tinit, build=mfun, lower=c(rep(NA, 3), rep(0.00001, 3), rep(NA, 9), rep(0.00001, 9)), control=list(maxit=200))
#dlmEnd <- Sys.time()
#mfun(mfit$par)
#mfun(mfit$par)$GG
#tA
#mfun(mfit$par)$FF
#tC
#diag(mfun(mfit$par)$W)
#diag(tQ)
#diag(mfun(mfit$par)$V)
#diag(tR)
#--------------------------------------------------------------------
# Fit state space model to data via OpenMx package
AStart <- matrix(0, xdim, xdim)
AStart[tA!=0] <- .5
BStart <- c(rep(1, xdim), rep(0, xdim))
CStart <- matrix(0, ydim, xdim)
CStart[tC!=0] <- .8
DStart <- c(rep(0, ydim), rep(.5, ydim))
RStart <- .2
smod <- mxModel(
name='State Space Example with Inputs',
mxMatrix(name='A', values=AStart, nrow=xdim, ncol=xdim, free=c(TRUE, FALSE, FALSE, FALSE, TRUE, TRUE, FALSE, FALSE, TRUE), labels=c('a', NA, NA, NA, 'b', 'c', NA, 'csym[1,1]', 'b')),
mxAlgebra(name='csym', -c),
mxMatrix(name='B', values=BStart, nrow=xdim, ncol=udim, free=c(rep(TRUE, xdim), rep(FALSE, xdim))),
mxMatrix(name='C', values=CStart, nrow=ydim, ncol=xdim, free=(tC!=0), lbound=1e-6, dimnames=list(rownames(ty), rownames(tx))),
mxMatrix(name='D', values=DStart, nrow=ydim, ncol=udim, free=c(rep(FALSE, ydim), rep(TRUE, ydim))),
# Note Factor error matrix is fixed! This is for model identification.
# I happen to fix the variances to their true values.
mxMatrix(name='Q', type='Diag', values=diag(tQ), nrow=xdim, ncol=xdim, free=FALSE),
mxMatrix(name='R', type='Diag', values=RStart, nrow=ydim, ncol=ydim, free=TRUE),
mxMatrix(name='x', values=x0, nrow=xdim, ncol=1, free=FALSE),
mxMatrix(name='P', values=P0, nrow=xdim, ncol=xdim, free=FALSE),
mxMatrix(type="Full", udim, 1, labels=c("data.u1", "data.u2"), name="u"),
mxData(observed=cbind(t(ty), t(tu)), type='raw'),
mxExpectationStateSpace(A='A', B='B', C='C', D='D', Q='Q', R='R', x0='x', P0='P', u='u', scores=TRUE),
mxFitFunctionML()
)
srun <- mxRun(smod)
# Notice that the estimated parameters are close their true generating values
srun$A$values
tA
srun$B$values
tB
srun$C$values
tC
srun$D$values
tD
summary(srun)
prevEstA <- matrix(c(
-0.5120488, 0.0000000, 0.0000000,
0.0000000, -0.9138461, -0.0804081,
0.0000000, 0.0804081, -0.9138461),
3, 3, byrow=TRUE)
prevEstB <- matrix(c(
3.586831, 0,
2.566541, 0,
-2.467185, 0),
3, 2, byrow=TRUE
)
prevEstC <- c( #nonzero factor loadings
0.8098549, 0.7388864, 0.8933953,
0.6473688, 0.9509194, 0.7705916,
0.9083092, 0.4261629, 0.8682982)
prevEstD <- c( #nonzero part of feedthrough matrix
0.17368033, 0.23882681, 0.23983565,
0.23048017, 0.26401039, 0.24613672,
0.24795466, 0.17059682, 0.09830594)
prevEstR <- c( #diagonal manifest error cov
0.45646303, 0.16792211, 0.54165256,
0.07453542, 0.41766447, 0.33869364,
0.21551307, 0.69513482, 0.69142726)
omxCheckCloseEnough(srun$A$values, prevEstA, epsilon=0.001)
omxCheckCloseEnough(srun$B$values, prevEstB, epsilon=0.01)
omxCheckCloseEnough(srun$C$values[srun$C$free], prevEstC, epsilon=0.001)
omxCheckCloseEnough(srun$D$values[srun$D$free], prevEstD, epsilon=0.001)
omxCheckCloseEnough(diag(srun$R$values), prevEstR, epsilon=0.001)
# Check to make sure definition variables can be evaluated
uAtRow10 <- mxEval(u, smod, compute=TRUE, defvar.row=10)
dAtRow10 <- mxEval(rbind(data.u1, data.u2), smod, compute=TRUE, defvar.row=10)
urAtRow10 <- mxEval(u, srun, compute=TRUE, defvar.row=10)
drAtRow10 <- mxEval(rbind(data.u1, data.u2), srun, compute=TRUE, defvar.row=10)
omxCheckCloseEnough(uAtRow10, dAtRow10, epsilon=1e-10)
omxCheckCloseEnough(uAtRow10, drAtRow10, epsilon=1e-10)
omxCheckCloseEnough(urAtRow10, drAtRow10, epsilon=1e-10)
# Check that OpenMx errors appropriately for a missing definition variable.
naData <- cbind(t(ty), t(tu))
naData[10,11] <- NA
naModel <- mxModel(smod, name='missingDef', mxData(observed=naData, type='raw'))
omxCheckError(naRun <- mxRun(naModel), "missingDef.data: NA in definition variable 'u2'")
# Check for proper error message when there exist missing definition variables.
cor(t(tx), srun$expectation$xPredicted)
cor(t(tx), srun$expectation$xUpdated)
cor(t(tx), srun$expectation$xSmoothed)
|