1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153
|
#
# Copyright 2007-2018 by the individuals mentioned in the source code history
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#--------------------------------------------------------------------
# Author: Michael D. Hunter
# Date: 2013.09.24
# Filename: StateSpaceMissingData.R
# Purpose: Test the state space expectation with missing data.
# I compare an SSM with no missing data to one with a little mcar missing data.
# an SSM as a factor model to a LISREL factor model with no missing data.
# an SSM as a factor model to a LISREL factor model with mcar missing data.
#--------------------------------------------------------------------
#--------------------------------------------------------------------
# Revision History
# Tue Sep 24 12:37:20 Central Daylight Time 2013 -- Michael Hunter created file
# Mon 17 Feb 2014 18:57:17 Central Standard Time -- Michael Hunter added dimnames and variable re-ordering
#------------------------------------------------------------------------------
require(OpenMx)
data(demoOneFactor)
demoOneFactorMiss <- as.matrix(demoOneFactor)
nvar <- ncol(demoOneFactor)
varnames <- colnames(demoOneFactor)
nmiss <- 20
set.seed(23)
missmat <- matrix(c(
sample(1:nrow(demoOneFactor), size=nmiss),
sample(1:nvar, size=nmiss, replace=TRUE)), ncol=2, nrow=nmiss)
demoOneFactorMiss[missmat] <- NA
# Try case of plenty of missing data in last row
demoOneFactorMiss[cbind(rep(nrow(demoOneFactorMiss), 3), c(1,3, 4))] <- NA
#------------------------------------------------------------------------------
# Compare an SSM with no missing data to one with a little mcar missing data.
ssModel <- mxModel(name="State Space Manual Example",
mxMatrix("Full", 1, 1, TRUE, .3, name="A"),
mxMatrix("Zero", 1, 1, name="B"),
mxMatrix("Full", nvar, 1, TRUE, .6, name="C", dimnames=list(varnames, "F1")), #Note: dimnames map rows of C matrix to columns of data!
mxMatrix("Zero", nvar, 1, name="D"),
mxMatrix("Diag", 1, 1, FALSE, 1, name="Q"),
mxMatrix("Diag", nvar, nvar, TRUE, .2, name="R"),
mxMatrix("Zero", 1, 1, name="x0"),
mxMatrix("Diag", 1, 1, FALSE, 1, name="P0"),
mxMatrix("Zero", 1, 1, name="u"),
mxData(observed=demoOneFactor[,sample(size=5, x=names(demoOneFactor), replace=FALSE)], type="raw"),
mxExpectationStateSpace("A", "B", "C", "D", "Q", "R", "x0", "P0", "u"),
mxFitFunctionML()
)
ssRun <- mxRun(ssModel)
ssMiss <- mxModel(ssModel, name="With Missing",
mxData(observed=demoOneFactorMiss, type="raw")
)
ssMissRun <- mxRun(ssMiss)
ssNoMissParam <- summary(ssRun)$parameters[, c(5, 6)]
ssMissParam <- summary(ssMissRun)$parameters[, c(5, 6)]
# Check if missing data estimates are close to complete data ones
for(i in 1:nrow(ssNoMissParam)){
omxCheckCloseEnough(ssNoMissParam[i,], ssMissParam[i,], epsilon=0.012)
}
# Note: Even though the data columns are in different orders
# the parameter estimates are the same because the dimnames of C
# effectively re-arrange the columns of the data.
head(ssRun$data$observed)
head(ssMissRun$data$observed)
#------------------------------------------------------------------------------
# Compare an SSM as a factor model to a LISREL factor model with no missing data.
ssFactor <- mxModel(ssModel, name="As Factor",
mxMatrix("Full", 1, 1, FALSE, 0, name="A")
)
ssFactorRun <- mxRun(ssFactor)
liFactor <- mxModel(ssFactor, name="LISREL Factor",
mxMatrix("Full", 1, 1, FALSE, 0, name="KA", dimnames=list("F1", "F1")),
mxMatrix("Full", nvar, 1, TRUE, 0, name="TX", dimnames=list(varnames, NA)),
mxExpectationLISREL(LX="C", PH="Q", TD="R", TX="TX", KA="KA")
)
liRun <- mxRun(liFactor)
# summary(liRun)
ssFactorNoMissParam <- summary(ssFactorRun)$parameters[1:10, c(5, 6)]
liFactorNoMissParam <- summary(liRun)$parameters[1:10, c(5, 6)]
omxCheckCloseEnough(ssFactorNoMissParam, liFactorNoMissParam, epsilon=0.01)
#------------------------------------------------------------------------------
# Compare an SSM as a factor model to a LISREL factor model with mcar missing data.
ssFactorMiss <- mxModel(ssFactor, name="As Factor with Missing",
mxData(observed=demoOneFactorMiss, type="raw")
)
liFactorMiss <- mxModel(liFactor, name="LISREL Factor with Missing",
mxData(observed=demoOneFactorMiss, type="raw")
)
ssFactorMissRun <- mxRun(ssFactorMiss)
liMissRun <- mxRun(liFactorMiss)
ssFactorMissParam <- summary(ssFactorMissRun)$parameters[1:10, c(5, 6)]
liFactorMissParam <- summary(liMissRun)$parameters[1:10, c(5, 6)]
omxCheckCloseEnough(ssFactorMissParam, liFactorMissParam, epsilon=0.01)
#------------------------------------------------------------------------------
# Ensure we ignore all-missing rows
demoOneFactorMiss[10,] <- NA
ssFactorAllMiss <- mxModel(
ssModel, name="As Factor",
mxMatrix("Full", 1, 1, FALSE, 0, name="A"),
mxData(observed=demoOneFactorMiss, type="raw"))
ssFactorAllMissRun <- mxRun(ssFactorAllMiss)
param <- summary(ssFactorAllMissRun)$parameters[1:10, c(5, 6)]
omxCheckCloseEnough(param, liFactorMissParam, epsilon=0.01)
|