File: SubStateSpaceOsc.R

package info (click to toggle)
r-cran-openmx 2.21.1%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 14,412 kB
  • sloc: cpp: 36,577; ansic: 13,811; fortran: 2,001; sh: 1,440; python: 350; perl: 21; makefile: 5
file content (183 lines) | stat: -rwxr-xr-x 6,209 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
#
#   Copyright 2007-2018 by the individuals mentioned in the source code history
#
#   Licensed under the Apache License, Version 2.0 (the "License");
#   you may not use this file except in compliance with the License.
#   You may obtain a copy of the License at
# 
#        http://www.apache.org/licenses/LICENSE-2.0
# 
#   Unless required by applicable law or agreed to in writing, software
#   distributed under the License is distributed on an "AS IS" BASIS,
#   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#   See the License for the specific language governing permissions and
#   limitations under the License.

library(mvtnorm)

#--------------------------------------------------------------------
# Author: Michael D. Hunter
# Date: 2012.12.06
# Filename: StateSpaceOsc.R
# Purpose: Test the state space expectation.
#--------------------------------------------------------------------


#--------------------------------------------------------------------
# Revision History
# Thu Dec 06 18:59:04 Central Standard Time 2012 -- Michael Hunter Checked in file to models/failing
# Thu 14 Feb 2013 15:52:57 Central Standard Time -- Michael Hunter realized the model actually worked.
# 


#--------------------------------------------------------------------
# Load required packages

require(OpenMx)
require(mvtnorm) # used to generate data
#require(dlm) # only used if model is estimated with dlm for comparison


#--------------------------------------------------------------------
# Generate Data

xdim <- 3
udim <- 2
ydim <- 9
tdim <- 200
set.seed(948)
tA <- matrix(c(-.4, 0, 0, 0, -.9, .1, 0, -.1, -.9), xdim, xdim)
tB <- matrix(c(0), xdim, udim)
tC <- matrix(c(runif(3, .4, 1), rep(0, ydim), runif(3, .4, 1), rep(0, ydim), runif(3, .4, 1)), ydim, xdim)
tD <- matrix(c(0), ydim, udim)
tQ <- matrix(c(0), xdim, xdim); diag(tQ) <- runif(xdim)
tR <- matrix(c(0), ydim, ydim); diag(tR) <- runif(ydim)

x0 <- matrix(c(rnorm(xdim)), xdim, 1)
P0 <- diag(c(runif(xdim)))
tx <- matrix(0, xdim, tdim+1)
tu <- matrix(0, udim, tdim)
ty <- matrix(0, ydim, tdim)

tx[,1] <- x0
for(i in 2:(tdim+1)){
	tx[,i] <- tA %*% tx[,i-1] + tB %*% tu[,i-1] + t(rmvnorm(1, rep(0, xdim), tQ))
	ty[,i-1] <- tC %*% tx[,i-1] + tD %*% tu[,i-1] + t(rmvnorm(1, rep(0, ydim), tR))
}

#plot(tx[1,], type='l')

rownames(ty) <- paste('y', 1:ydim, sep='')
rownames(tx) <- paste('x', 1:xdim, sep='')


#--------------------------------------------------------------------
# Fit state space model to data via dlm package
# For posterity show how the same model would be estimated in the dlm package.
# This is how the values I validated the estimation for OpenMx,
#  i.e. by comparing the estimates from dlm and OpenMx.
# Note that in my (mhunter) experience OpenMx is much faster (25x in this example).

#mfun <- function(x){
#	mG <- matrix(c(x[1], 0, 0, 0, x[2], x[3], 0, -x[3], x[2]), xdim, xdim)
#	mW <- tQ # diag(x[4:6])
#	mF <- matrix(c(x[7:9], rep(0, ydim), x[10:12], rep(0, ydim), x[13:15]), ydim, xdim)
#	mV <- diag(x[16:24])
#	mM <- x0
#	mC <- P0
#	return(dlm(FF=mF, V=mV, GG=mG, W=mW, m0=mM, C0=mC))
#}


#tinit <- c(-.4, -.9, .1, diag(tQ), tC[tC!=0], diag(tR))
#mfun(tinit)

#dlmBegin <- Sys.time()
#mfit <- dlmMLE(y=t(ty), parm=tinit, build=mfun, lower=c(rep(NA, 3), rep(0.00001, 3), rep(NA, 9), rep(0.00001, 9)), control=list(maxit=200))
#dlmEnd <- Sys.time()
#mfun(mfit$par)

#mfun(mfit$par)$GG
#tA

#mfun(mfit$par)$FF
#tC

#diag(mfun(mfit$par)$W)
#diag(tQ)

#diag(mfun(mfit$par)$V)
#diag(tR)



#--------------------------------------------------------------------
# Fit state space model to data via OpenMx package

smod <- mxModel(
	name='StateSpaceExample',
	mxMatrix(name='A', values=tA, nrow=xdim, ncol=xdim, free=c(TRUE, FALSE, FALSE, FALSE, TRUE, TRUE, FALSE, TRUE, TRUE), labels=c('a', NA, NA, NA, 'b', 'c', NA, 'd', 'b'), ubound=c(-.6, rep(NA, 8))),
	mxAlgebra(name='csym', -c),
	mxConstraint(name='ccon', d == csym),
	mxMatrix(name='B', values=0, nrow=xdim, ncol=udim, free=FALSE),
	mxMatrix(name='C', values=tC, nrow=ydim, ncol=xdim, free=(tC!=0), dimnames=list(rownames(ty), rownames(tx))),
	mxMatrix(name='D', values=0, nrow=ydim, ncol=udim, free=FALSE),
	# Note Factor error matrix is fixed!  This is for model identification.
	# I happen to fix the variances to their true values.
	mxMatrix(name='Q', type='Diag', values=diag(tQ), nrow=xdim, ncol=xdim, free=FALSE),
	mxMatrix(name='R', type='Diag', values=diag(tR), nrow=ydim, ncol=ydim, free=TRUE),
	mxMatrix(name='x', values=x0, nrow=xdim, ncol=1, free=FALSE),
	mxMatrix(name='P', values=P0, nrow=xdim, ncol=xdim, free=FALSE),
	mxMatrix("Zero", udim, 1, name="u"),
	mxExpectationStateSpace(A='A', B='B', C='C', D='D', Q='Q', R='R', x='x', P='P', u='u'),
	mxFitFunctionML()
)

container <- mxModel("Container", smod,
                     mxData(observed=t(ty)[1:200,], type='raw'),
                     mxFitFunctionMultigroup(groups="StateSpaceExample.fitfunction"))

# Uncomment for degugging
#smod <- mxOption(smod, 'Calculate Hessian', 'No')
#smod <- mxOption(smod, 'Standard Errors', 'No')
#smod <- mxOption(smod, 'Major iterations', 0)


#ssmBegin <- Sys.time()
container <- mxRun(container)
#ssmEnd <- Sys.time()

#ssmEnd-ssmBegin
#dlmEnd-dlmBegin
# OpenMx is 24.6 times faster then dlm

# Check likelihoods of initial parameters
# -2LL
#summary(srun)$Minus2LogLikelihood # when major iterations is 0
#2*dlmLL(y=t(ty), mod=mfun(tinit)) + 200*9*log(2*pi) # dlm gives back -LL - CONST, so adjust it.  200 is N, 9 is k

srun <- container$submodels$"StateSpaceExample"$matrices

dlmEstA <- matrix(c(
	-0.7911864,  0.0000000,  0.0000000,
	 0.0000000, -0.8960419, -0.1064521,
	 0.0000000,  0.1064521, -0.8960419),
	3, 3, byrow=TRUE)

dlmEstC <- c( #nonzero factor loadings
	0.1798166, 0.4718692, 0.4547457,
	0.9500226, 0.6864060, 0.9554287,
	0.4287551, 0.9650694, 0.4956449)

dlmEstR <- c( #diagonal manifest error cov
	0.3798346, 0.8068893, 1.0383961,
	0.6261729, 0.1331556, 0.7761499,
	0.7538665, 0.9816791, 1.2166798)



omxCheckCloseEnough(srun$A$values, dlmEstA, epsilon=0.001)
omxCheckCloseEnough(srun$C$values[srun$C$free], dlmEstC, epsilon=0.001)
omxCheckCloseEnough(diag(srun$R$values), dlmEstR, epsilon=0.001)