1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183
|
#
# Copyright 2007-2018 by the individuals mentioned in the source code history
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
library(mvtnorm)
#--------------------------------------------------------------------
# Author: Michael D. Hunter
# Date: 2012.12.06
# Filename: StateSpaceOsc.R
# Purpose: Test the state space expectation.
#--------------------------------------------------------------------
#--------------------------------------------------------------------
# Revision History
# Thu Dec 06 18:59:04 Central Standard Time 2012 -- Michael Hunter Checked in file to models/failing
# Thu 14 Feb 2013 15:52:57 Central Standard Time -- Michael Hunter realized the model actually worked.
#
#--------------------------------------------------------------------
# Load required packages
require(OpenMx)
require(mvtnorm) # used to generate data
#require(dlm) # only used if model is estimated with dlm for comparison
#--------------------------------------------------------------------
# Generate Data
xdim <- 3
udim <- 2
ydim <- 9
tdim <- 200
set.seed(948)
tA <- matrix(c(-.4, 0, 0, 0, -.9, .1, 0, -.1, -.9), xdim, xdim)
tB <- matrix(c(0), xdim, udim)
tC <- matrix(c(runif(3, .4, 1), rep(0, ydim), runif(3, .4, 1), rep(0, ydim), runif(3, .4, 1)), ydim, xdim)
tD <- matrix(c(0), ydim, udim)
tQ <- matrix(c(0), xdim, xdim); diag(tQ) <- runif(xdim)
tR <- matrix(c(0), ydim, ydim); diag(tR) <- runif(ydim)
x0 <- matrix(c(rnorm(xdim)), xdim, 1)
P0 <- diag(c(runif(xdim)))
tx <- matrix(0, xdim, tdim+1)
tu <- matrix(0, udim, tdim)
ty <- matrix(0, ydim, tdim)
tx[,1] <- x0
for(i in 2:(tdim+1)){
tx[,i] <- tA %*% tx[,i-1] + tB %*% tu[,i-1] + t(rmvnorm(1, rep(0, xdim), tQ))
ty[,i-1] <- tC %*% tx[,i-1] + tD %*% tu[,i-1] + t(rmvnorm(1, rep(0, ydim), tR))
}
#plot(tx[1,], type='l')
rownames(ty) <- paste('y', 1:ydim, sep='')
rownames(tx) <- paste('x', 1:xdim, sep='')
#--------------------------------------------------------------------
# Fit state space model to data via dlm package
# For posterity show how the same model would be estimated in the dlm package.
# This is how the values I validated the estimation for OpenMx,
# i.e. by comparing the estimates from dlm and OpenMx.
# Note that in my (mhunter) experience OpenMx is much faster (25x in this example).
#mfun <- function(x){
# mG <- matrix(c(x[1], 0, 0, 0, x[2], x[3], 0, -x[3], x[2]), xdim, xdim)
# mW <- tQ # diag(x[4:6])
# mF <- matrix(c(x[7:9], rep(0, ydim), x[10:12], rep(0, ydim), x[13:15]), ydim, xdim)
# mV <- diag(x[16:24])
# mM <- x0
# mC <- P0
# return(dlm(FF=mF, V=mV, GG=mG, W=mW, m0=mM, C0=mC))
#}
#tinit <- c(-.4, -.9, .1, diag(tQ), tC[tC!=0], diag(tR))
#mfun(tinit)
#dlmBegin <- Sys.time()
#mfit <- dlmMLE(y=t(ty), parm=tinit, build=mfun, lower=c(rep(NA, 3), rep(0.00001, 3), rep(NA, 9), rep(0.00001, 9)), control=list(maxit=200))
#dlmEnd <- Sys.time()
#mfun(mfit$par)
#mfun(mfit$par)$GG
#tA
#mfun(mfit$par)$FF
#tC
#diag(mfun(mfit$par)$W)
#diag(tQ)
#diag(mfun(mfit$par)$V)
#diag(tR)
#--------------------------------------------------------------------
# Fit state space model to data via OpenMx package
smod <- mxModel(
name='StateSpaceExample',
mxMatrix(name='A', values=tA, nrow=xdim, ncol=xdim, free=c(TRUE, FALSE, FALSE, FALSE, TRUE, TRUE, FALSE, TRUE, TRUE), labels=c('a', NA, NA, NA, 'b', 'c', NA, 'd', 'b'), ubound=c(-.6, rep(NA, 8))),
mxAlgebra(name='csym', -c),
mxConstraint(name='ccon', d == csym),
mxMatrix(name='B', values=0, nrow=xdim, ncol=udim, free=FALSE),
mxMatrix(name='C', values=tC, nrow=ydim, ncol=xdim, free=(tC!=0), dimnames=list(rownames(ty), rownames(tx))),
mxMatrix(name='D', values=0, nrow=ydim, ncol=udim, free=FALSE),
# Note Factor error matrix is fixed! This is for model identification.
# I happen to fix the variances to their true values.
mxMatrix(name='Q', type='Diag', values=diag(tQ), nrow=xdim, ncol=xdim, free=FALSE),
mxMatrix(name='R', type='Diag', values=diag(tR), nrow=ydim, ncol=ydim, free=TRUE),
mxMatrix(name='x', values=x0, nrow=xdim, ncol=1, free=FALSE),
mxMatrix(name='P', values=P0, nrow=xdim, ncol=xdim, free=FALSE),
mxMatrix("Zero", udim, 1, name="u"),
mxExpectationStateSpace(A='A', B='B', C='C', D='D', Q='Q', R='R', x='x', P='P', u='u'),
mxFitFunctionML()
)
container <- mxModel("Container", smod,
mxData(observed=t(ty)[1:200,], type='raw'),
mxFitFunctionMultigroup(groups="StateSpaceExample.fitfunction"))
# Uncomment for degugging
#smod <- mxOption(smod, 'Calculate Hessian', 'No')
#smod <- mxOption(smod, 'Standard Errors', 'No')
#smod <- mxOption(smod, 'Major iterations', 0)
#ssmBegin <- Sys.time()
container <- mxRun(container)
#ssmEnd <- Sys.time()
#ssmEnd-ssmBegin
#dlmEnd-dlmBegin
# OpenMx is 24.6 times faster then dlm
# Check likelihoods of initial parameters
# -2LL
#summary(srun)$Minus2LogLikelihood # when major iterations is 0
#2*dlmLL(y=t(ty), mod=mfun(tinit)) + 200*9*log(2*pi) # dlm gives back -LL - CONST, so adjust it. 200 is N, 9 is k
srun <- container$submodels$"StateSpaceExample"$matrices
dlmEstA <- matrix(c(
-0.7911864, 0.0000000, 0.0000000,
0.0000000, -0.8960419, -0.1064521,
0.0000000, 0.1064521, -0.8960419),
3, 3, byrow=TRUE)
dlmEstC <- c( #nonzero factor loadings
0.1798166, 0.4718692, 0.4547457,
0.9500226, 0.6864060, 0.9554287,
0.4287551, 0.9650694, 0.4956449)
dlmEstR <- c( #diagonal manifest error cov
0.3798346, 0.8068893, 1.0383961,
0.6261729, 0.1331556, 0.7761499,
0.7538665, 0.9816791, 1.2166798)
omxCheckCloseEnough(srun$A$values, dlmEstA, epsilon=0.001)
omxCheckCloseEnough(srun$C$values[srun$C$free], dlmEstC, epsilon=0.001)
omxCheckCloseEnough(diag(srun$R$values), dlmEstR, epsilon=0.001)
|