1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329
|
#
# Copyright 2007-2019 by the individuals mentioned in the source code history
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#------------------------------------------------------------------------------
# Author: Michael D. Hunter
# Date: 2014.06.10
# Filename: SummaryCheck.R
# Purpose: Actually test that pieces of MxSummary() do what they're supposed
# to do.
# Procedure: If you're going to muck around with some part of summary,
# first make sure this file tests that part. If this file does not test the
# part of summary that you want to change, then you must add to this test file
# before modifying summary. Once the test has been added, muck around with
# summary to your heart's content.
# TODO add multigroup case to make sure this works
# TODO add model with constraint to make sure it adds back DoF
#------------------------------------------------------------------------------
#------------------------------------------------------------------------------
# Load package and data
require(OpenMx)
data(demoTwoFactor)
#------------------------------------------------------------------------------
# Specify raw data model
vpf <- 5
varnames <- names(demoTwoFactor)
latnames <- c("F1", "F2")
fl <- mxPath(from=rep(latnames, each=vpf), to=varnames, values=.8, labels=paste("load_", varnames, sep=""), free=TRUE)
fc <- mxPath(latnames, connect="unique.pairs", arrows=2, free=c(FALSE, TRUE, FALSE), values=c(1, .5, 1), labels=c("varF1", "covF1F2", "varF2"))
mm <- mxPath(from="one", to=varnames, free=TRUE, values=colMeans(demoTwoFactor), labels=paste("mean_", varnames, sep=""))
rv <- mxPath(from=varnames, arrows=2, free=TRUE, values=.2, labels=paste("resid_", varnames, sep=""))
raw <- mxModel("Raw Test Model to Check MxSummary",
type="RAM", manifestVars=varnames, latentVars=latnames,
fl, fc, mm, rv,
mxData(demoTwoFactor, "raw")
)
raw.fit <- mxRun(raw)
#------------------------------------------------------------------------------
# Specify Saturated raw data model
sat.fit <- mxRefModels(raw.fit, run=TRUE)
cmp <- mxCompare(sat.fit[['Saturated']], raw.fit)
omxCheckCloseEnough(cmp$diffLL[2], 49.764, 1e-2)
omxCheckCloseEnough(cmp$diffdf[2], 34)
omxCheckCloseEnough(cmp$p[2], 0.03961044, 1e-3)
cmp <- mxCompare(raw.fit, raw.fit)
omxCheckTrue(is.na(cmp$p[2]))
cmp <- omxCheckWarning(mxCompare(raw.fit, sat.fit[['Saturated']]),
"Model 'Raw Test Model to Check MxSummary' has more degrees of freedom than Saturated Raw Test Model to Check MxSummary which means that the models need to be compared in the opposite order")
omxCheckTrue(is.na(cmp$p[2]))
omxCheckError(mxCompare(raw.fit, raw), "Model 'Raw Test Model to Check MxSummary' has not been run. Please, mxRun() your model before trying to compare it.")
#------------------------------------------------------------------------------
# Specify a multiple group model
data(demoOneFactor)
manifests <- names(demoOneFactor)
latents <- c("G")
factorModel <- mxModel("OneFactor",
type="RAM",
manifestVars = manifests,
latentVars = latents,
mxPath(from=latents, to=manifests),
mxPath(from=manifests, arrows=2),
mxPath(from=latents, arrows=2, free=FALSE, values=1.0),
mxPath(from = 'one', to = manifests),
mxData(demoOneFactor, type="raw"))
manifests <- manifests[-1]
factorModelLess <- mxModel("OneVarFewer",
type="RAM",
manifestVars = manifests,
latentVars = latents,
mxPath(from=latents, to=manifests),
mxPath(from=manifests, arrows=2),
mxPath(from=latents, arrows=2, free=FALSE, values=1.0),
mxPath(from = 'one', to = manifests),
mxData(demoOneFactor, type="raw"))
mg <- mxModel("bob", factorModel, factorModelLess, mxFitFunctionMultigroup(c("OneFactor", "OneVarFewer")))
mg.fit <- mxRun(mg)
mg.sat <- mxRefModels(mg.fit, run=TRUE)
omxCheckEquals(dim(mxEval(satCov, mg.sat[[1]]$`Saturated OneFactor`))[1], 5)
omxCheckEquals(dim(mxEval(satCov, mg.sat[[1]]$`Saturated OneVarFewer`))[1], 4)
# the saturated model for OneVarFewer should be only on the variables used x2:x5, not all the variables x1:x5.
refStats <- lapply(mg.sat, function(model) {
list(model$output$Minus2LogLikelihood, summary(model)$degreesOfFreedom)
})
refStats$Independence[[1]] <- mg.fit$output$fit - 100
ign <- omxCheckWarning(summary(mg.fit, refModels=refStats),
"Your model may be mis-specified (and fit worse than an independence model), or you may be using the wrong independence model, see ?mxRefModels")
#------------------------------------------------------------------------------
# Specify a multiple group cov model
data(demoOneFactor)
latents = c("G")
manifests = names(demoOneFactor)
m1 <- mxModel("model1", type = "RAM",
manifestVars = manifests, latentVars = latents,
mxPath(from = latents, to = manifests),
mxPath(from = manifests, arrows = 2),
mxPath(from = latents, arrows = 2, free = F, values = 1.0),
mxData(cov(demoOneFactor), type = "cov", numObs = 500)
)
m2 <- mxModel("model2", type = "RAM",
manifestVars = manifests, latentVars = latents,
mxPath(from = latents, to = manifests),
mxPath(from = manifests, arrows = 2),
mxPath(from = latents, arrows = 2, free = F, values = 1.0),
mxData(cov(demoOneFactor), type = "cov", numObs = 500)
)
m3 = mxModel("bob", m1, m2, mxFitFunctionMultigroup(c("model1","model2")))
m3r = mxRun(m3)
ref = mxRefModels(m3r, run=TRUE)
expecteError = "List of length two (illegal argument) passed to 'SaturatedLikelihood' argument of summary function. You probably meant to use the refModels argument instead."
omxCheckError(summary(m3r, SaturatedLikelihood=ref), expecteError)
# TODO add checking of fit stats for this model
#------------------------------------------------------------------------------
# Specify cov data models
cov <- mxModel("Covariance Test Model to Check MxSummary", type="RAM",
manifestVars=varnames, latentVars=latnames,
fl, fc, rv,
mxData(cov(demoTwoFactor), "cov", numObs=nrow(demoTwoFactor))
)
cov.fit = mxRun(cov)
cov.sat = mxRefModels(cov.fit, run=TRUE)
covm = mxModel("Covariance and Means Test Model to Check MxSummary", type="RAM",
manifestVars=varnames, latentVars=latnames,
fl, fc, rv, mm,
mxData(cov(demoTwoFactor), "cov", numObs=nrow(demoTwoFactor), means=colMeans(demoTwoFactor))
)
covm.fit = mxRun(covm)
#------------------------------------------------------------------------------
# Get summaries of models
sat.sum <- summary(sat.fit[[1]])
raw.sum <- summary(raw.fit)
raws.sum <- summary(raw.fit, SaturatedLikelihood=sat.fit[[1]])
rawr.sum <- summary(raw.fit, refModels=sat.fit)
cov.sum <- summary(cov.fit)
covs.sum <- summary(covm.fit)
mg.sum <- summary(mg.fit, refModels=mg.sat)
#------------------------------------------------------------------------------
# Compare Fit statistics to what they should be.
# Things to check for raw w/o sat, raw w/ sat, cov, cov & means, multi-group
# number of observed statistics
# degrees of freedom
# -2LL, sat -2LL, numObs
# chi-square, chi dof, chi p
# AIC df AIV, param, BIC df, BIC param, BIC sample size
# CFI, TLI, RMSEA
# number of observed statistics
omxCheckEquals(raw.sum$observedStatistics, 5000)
omxCheckEquals(raws.sum$observedStatistics, 5000)
omxCheckEquals(cov.sum$observedStatistics, 55)
omxCheckEquals(covs.sum$observedStatistics, 65)
omxCheckEquals(mg.sum$observedStatistics, 5*500 + 4*500)
# degrees of freedom
# TODO add model with constraint to make sure it adds back DoF
ep <- 31
omxCheckEquals(raw.sum$degreesOfFreedom, 5000-ep)
omxCheckEquals(raws.sum$degreesOfFreedom, 5000-ep)
omxCheckEquals(sat.sum$degreesOfFreedom, 5000-sat.sum$estimatedParameters)
omxCheckEquals(raws.sum$satDoF, 5000-sat.sum$estimatedParameters)
omxCheckEquals(cov.sum$degreesOfFreedom, 55-(ep-10)) #no means estimated
omxCheckEquals(covs.sum$degreesOfFreedom, 65-ep)
omxCheckEquals(mg.sum$degreesOfFreedom, 5*500+4*500-27)
# -2LL, sat -2LL, numObs
omxCheckWithinPercentError(raw.sum$Minus2LogLikelihood, 9236.675, percent=1e-4)
omxCheckTrue(is.na(raw.sum$SaturatedLikelihood))
omxCheckWithinPercentError(raws.sum$SaturatedLikelihood, 9186.911, percent=1e-4)
omxCheckWithinPercentError(cov.sum$SaturatedLikelihood, -2.464397, percent=1e-4)
omxCheckWithinPercentError(covs.sum$SaturatedLikelihood, -2.464397, percent=1e-4)
omxCheckEquals(raw.sum$numObs, 500)
omxCheckEquals(raws.sum$numObs, 500)
omxCheckEquals(cov.sum$numObs, 500)
omxCheckEquals(covs.sum$numObs, 500)
omxCheckEquals(mg.sum$numObs, 1000)
# chi-square, chi dof, chi p
omxCheckTrue(is.na(raw.sum$Chi))
omxCheckTrue(!is.na(raws.sum$Chi))
omxCheckCloseEnough(cov.sum$Chi, 49.75399, epsilon=1e-3)
omxCheckCloseEnough(covs.sum$Chi, 49.75399, epsilon=1e-3)
# ChiDoF = df - sat.df, i.e. df = obsStat-ep, sat.df = obsStat-sat.ep, so ChiDoF = sat.ep - ep
chi.df = 34
# line asserting ChiDoF is na is inconsistent with the next, that it = chi.df...
# omxCheckTrue(is.na(raw.sum$ChiDoF)) # is still populated, but it reported as NA when satLik is NA
omxCheckEquals(raws.sum$ChiDoF, chi.df)
omxCheckEquals(cov.sum$ChiDoF, chi.df)
omxCheckEquals(covs.sum$ChiDoF, chi.df)
omxCheckEquals(mg.sum$ChiDoF, 7)
omxCheckCloseEnough(mg.sum$Chi, 13.1811, 0.001)
omxCheckTrue(is.na(raw.sum$p))
omxCheckCloseEnough(raws.sum$p, pchisq(raws.sum$Chi, raws.sum$ChiDoF, lower.tail=FALSE), 1e-8)
omxCheckCloseEnough(cov.sum$p, pchisq(cov.sum$Chi, cov.sum$ChiDoF, lower.tail=FALSE), 1e-8)
omxCheckCloseEnough(covs.sum$p, pchisq(covs.sum$Chi, covs.sum$ChiDoF, lower.tail=FALSE), 1e-8)
# AIC df, AIC param, BIC df, BIC param, BIC sample size
# CFI, TLI, RMSEA
# RMSEA
omxCheckTrue(is.na(raw.sum$RMSEA))
omxCheckTrue(!is.na(raws.sum$RMSEA))
omxCheckCloseEnough(raws.sum$RMSEA, 0.03045151, .001)
omxCheckCloseEnough(raws.sum$RMSEACI, c(0, 0.05064688), .001)
omxCheckCloseEnough(cov.sum$RMSEA, 0.03035523, .001)
omxCheckCloseEnough(cov.sum$RMSEACI, c(0, 0.05056999), .001)
omxCheckCloseEnough(mg.sum$RMSEA, 0.02971556, .001)
omxCheckCloseEnough(mg.sum$RMSEACI, c(0, 0.0582353), .001)
# CFI
omxCheckTrue(is.na(raw.sum$CFI))
omxCheckCloseEnough(cov.sum$CFI, 0.9978234, .001)
omxCheckCloseEnough(rawr.sum$CFI, 0.997814, .001)
omxCheckCloseEnough(mg.sum$CFI, 0.999077, .001)
# TLI
omxCheckTrue(is.na(raw.sum$TLI))
omxCheckCloseEnough(cov.sum$TLI, 0.9971192, .001)
omxCheckCloseEnough(rawr.sum$TLI, 0.9971067, .001)
omxCheckCloseEnough(mg.sum$TLI, 0.9978904, .001)
# Information Criteria
omxCheckCloseEnough(raw.sum$informationCriteria['AIC:','par'], 9298.67, .01)
omxCheckCloseEnough(raw.sum$informationCriteria['BIC:','par'], 9429.32, .01)
omxCheckCloseEnough(sat.sum$informationCriteria['AIC:','par'], 9316.91, .01)
omxCheckCloseEnough(sat.sum$informationCriteria['BIC:','par'], 9590.86, .01)
omxCheckCloseEnough(raws.sum$informationCriteria['AIC:','par'], 9298.67, .01)
omxCheckCloseEnough(raws.sum$informationCriteria['BIC:','par'], 9429.32, .01)
omxCheckCloseEnough(cov.sum$informationCriteria['AIC:','par'], 91.75, .01)
omxCheckCloseEnough(cov.sum$informationCriteria['BIC:','par'], 180.26, .01)
omxCheckCloseEnough(covs.sum$informationCriteria['AIC:','par'], 111.75, .01)
omxCheckCloseEnough(covs.sum$informationCriteria['BIC:','par'], 242.40, .01)
omxCheckCloseEnough(mg.sum$informationCriteria[c(1:4,6)], c(-6936.958, -28889.347, 2063.042, 2195.552, 2109.798), .01)
# -----------------------------------
library(OpenMx)
data(demoOneFactor)
manifests <- names(demoOneFactor)
latents <- "G1"
fit1 <- mxRun(mxModel(model="One Factor", type="RAM",
manifestVars = manifests, latentVars = latents,
mxPath(from = latents, to=manifests),
mxPath(from = manifests, arrows = 2),
mxPath(from = latents, arrows = 2, free = FALSE, values = 1.0),
mxPath(from = 'one', manifests, free=FALSE),
mxData(cov(demoOneFactor), colMeans(demoOneFactor), type = "cov", numObs = 500)
))
fit2 <- mxRun(mxModel(model="One Factor", type="RAM",
manifestVars = manifests, latentVars = latents,
mxPath(from = latents, to=manifests, values=0, free=c(F,T,T,T,T)),
mxPath(from = manifests, arrows = 2),
mxPath(from = latents, arrows = 2, free = FALSE, values = 1.0),
mxPath(from = 'one', manifests, free=FALSE),
mxData(cov(demoOneFactor), colMeans(demoOneFactor), type = "cov", numObs = 500)
))
got <- mxCompare(fit1, fit2, boot=T, replications = 10)
omxCheckCloseEnough(got[2,'p'], 0, .01)
|