File: UnivariateRandomInterceptWide.R

package info (click to toggle)
r-cran-openmx 2.21.1%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 14,412 kB
  • sloc: cpp: 36,577; ansic: 13,811; fortran: 2,001; sh: 1,440; python: 350; perl: 21; makefile: 5
file content (158 lines) | stat: -rw-r--r-- 4,903 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
#
#   Copyright 2007-2018 by the individuals mentioned in the source code history
#
#   Licensed under the Apache License, Version 2.0 (the "License");
#   you may not use this file except in compliance with the License.
#   You may obtain a copy of the License at
# 
#        http://www.apache.org/licenses/LICENSE-2.0
# 
#   Unless required by applicable law or agreed to in writing, software
#   distributed under the License is distributed on an "AS IS" BASIS,
#   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#   See the License for the specific language governing permissions and
#   limitations under the License.

# ---------------------------------------------------------------------
# Program: UniRandomIntTest-120815.R
#  Author: Steve Boker
#    Date: Wed Aug 15 10:50:12 CEST 2012
#
# This program simulates some univariate multilevel data with random
# intercepts only, fits it with lme(), fits a naive wide format
# multilevel OpenMx model and checks the results
#
# ---------------------------------------------------------------------
# Revision History
#   Steve Boker -- Wed Aug 15 10:50:14 CEST 2012
#      Created UniRandomIntTest-120815.R
#
# ---------------------------------------------------------------------

# ----------------------------------
# Read libraries and set options.

options(width=110)
library(nlme)
library(OpenMx)

# ----------------------------------
# Set constants.

sdLevelOneE <- sqrt(.2)
sdIntercepts <- sqrt(.5)
sdX <- sqrt(1)

N <- 400    # number of participants
P <- 100    # number of observations per participant
b0 <- .5    # Fixed effect intercept
b1 <- .8    # Fixed effect slope

set.seed(1)

# ----------------------------------
# Simulate the data.

X <- rnorm(N*P, 0, sd=sdX)
ID <- rep(1:N, each=P)
b0i <- b0 + rnorm(N, 0, sd=sdIntercepts)
Y <- rep(b0i, each=P) + b1*X + rnorm(N*P, 0, sd=sdLevelOneE)

SimUniRandomIntFrame <- data.frame(ID, X, Y)

# ----------------------------------
# Test with lme().

lmeOut <- summary(lme(Y ~ X, random= list(~ 1 | ID),
		      data=SimUniRandomIntFrame))

# For lme4, use:
# lmerOut <- lmer(Y ~ X + (1 | ID), data=SimUniRandomIntFrame)

# ----------------------------------
# Set constants.

theIDs <- unique(SimUniRandomIntFrame$ID)
totalN <- length(theIDs)
totalVars <- 2

maxP <- 0
for (tID in theIDs) {
    tmask <- SimUniRandomIntFrame$ID==tID
    tLen <- length(SimUniRandomIntFrame$ID[tmask])
    if (tLen > maxP) 
        maxP <- tLen
}

# ----------------------------------
# Wide-format the data frame from tall format.

wideMatrix <- matrix(NA, nrow=totalN, ncol=1 + (maxP*totalVars))
colnames(wideMatrix) <- c("ID", paste("Y",1:maxP, sep=""),
			  paste("X",1:maxP, sep=""))
i <- 1
for (tID in theIDs) {
    wideMatrix[i, 1] <- tID
    tY <- SimUniRandomIntFrame$Y[SimUniRandomIntFrame$ID==tID]
    wideMatrix[i, 2:(length(tY)+1)] <- tY
    tX <- SimUniRandomIntFrame$X[SimUniRandomIntFrame$ID==tID]
    wideMatrix[i, (2+maxP):(length(tY)+1+maxP)] <- tX
    i <- i + 1
}
wideFrame <- data.frame(wideMatrix)

manifestNames <- colnames(wideFrame)[2:dim(wideFrame)[2]]
xNames <- paste("X",1:maxP, sep="")
yNames <- paste("Y",1:maxP, sep="")
latentNames <- c("b0i")

# ----------------------------------
# Build the OpenMx wide model.

OpenMxModelUniRandomIntModel1 <-
  mxModel("OpenMxModelUniRandomIntModel1",
	type="RAM", 
	manifestVars=manifestNames,
    latentVars=latentNames,
    mxPath(from=xNames, to=yNames, connect="single", arrows=1,
	   free=TRUE, values=.2, labels="b1"),
    mxPath(from=xNames, to=xNames, connect="single", arrows=2,
	   free=TRUE, values=.8, labels="vX"),
    mxPath(from=yNames, to=yNames, connect="single", arrows=2,
	   free=TRUE, values=.8, labels="eY"),
    mxPath(from=latentNames, to=yNames, arrows=1, free=FALSE, values=1),
    mxPath(from=latentNames, to=latentNames, connect="single", arrows=2,
	   free=TRUE, values=.8, labels="vb0i"),
    mxPath(from="one", to=c(xNames), arrows=1,
	   free=TRUE, values=1, labels="mX"),
    mxPath(from="one", to=c(latentNames), arrows=1,
	   free=TRUE, values=1, labels="mb0i"),
    mxData(observed=wideFrame, type="raw")
)

# ----------------------------------
# Fit the model and examine the summary results.

omxFit <- mxRun(OpenMxModelUniRandomIntModel1)

summary(omxFit)

omxCheckCloseEnough(lmeOut$coefficients$fixed[1],
		    mxEval(mb0i, model=omxFit), 0.001)

omxCheckCloseEnough(lmeOut$coefficients$fixed[2],
		    mxEval(b1, model=omxFit), 0.001)

omxCheckCloseEnough(lmeOut$sigma,
		    mxEval(sqrt(eY), model=omxFit), 0.001)

omxCheckCloseEnough(sd(c(lmeOut$coefficients$random$ID)),
		    mxEval(sqrt(vb0i), model=omxFit), 0.001)

if (0) {
	omxCheckCloseEnough(lmeOut$coefficients$fixed,
			    fixef(lmerOut), 1e-4)
  omxCheckCloseEnough(lmeOut$sigma, sigma(lmerOut), 1e-4)
  omxCheckCloseEnough(c(lmeOut$coefficients$random$ID),
		      ranef(lmerOut)$ID[[1]], 1e-4)
}