1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325
|
#
# Copyright 2007-2021 by the individuals mentioned in the source code history
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#------------------------------------------------------------------------------
# Author: Michael D. Hunter
# Date: 2022-09-07
# Filename: WLSCompare.R
# Purpose: Test WLS behavior with mxCompare on single and multiple groups
#------------------------------------------------------------------------------
#------------------------------------------------------------------------------
# Load packages
library(OpenMx)
#------------------------------------------------------------------------------
# Generate Data for 1 Factor Model
p <- 4
N <- 3200 #3200
man <- paste0('x', 1:4)
#--------------------------------------
# Stupidly simple model, but Mplus can't handle it
m1t <- mxModel(model="OneFOrd", type='RAM',
latentVars=c('F'),
manifestVars=man,
mxPath('F', arrow=2, values=1.5, free=TRUE, labels='FVar'),
mxPath(man, arrows=2, values=0.5, free=TRUE,
labels=paste0('resid', 1:p)),
mxPath('F', man, labels=paste0('load', 1:p),
free=c(FALSE, rep(TRUE, p-1)), values=c(1, 1 + (2:p - p/2 - 1)/5)),
mxPath('one', 'F', values=0.5, free=TRUE, labels='FMean'),
mxPath('one', man, values=0, free=FALSE),
mxThreshold(man, nThresh=3, free=c(TRUE, FALSE, TRUE),
labels=outer(man, paste0('thr', 1:3), FUN=paste0))
)
# set.seed(37)
# ds1 <- mxGenerateData(m1t, nrow=N)
#--------------------------------------
# Altered model so Mplus can deal
m1t <- mxModel(model="OneFOrd", type='RAM',
latentVars=c('F'),
manifestVars=man,
# Esimate factor variacne
mxPath('F', arrow=2, values=1.5, free=TRUE, labels='FVar'),
# Fix residual variances to 1
mxPath(man, arrows=2, values=1, free=FALSE,
labels=paste0('resid', 1:p)),
# Fix first factor loading
mxPath('F', man, labels=paste0('load', 1:p),
free=c(FALSE, rep(TRUE, p-1)), values=c(1, 1 + (2:p - p/2 - 1)/5)),
# Fix factor mean
mxPath('one', 'F', values=0, free=FALSE, labels='FMean'),
# Fix residual means (intercepts) to 0
mxPath('one', man, values=0, free=FALSE),
# Estimate all thresholds
mxThreshold(man, nThresh=3, free=c(TRUE, TRUE, TRUE),
labels=t(outer(man, paste0('thr', 1:3), FUN=paste0)))
)
set.seed(37)
ds1 <- mxGenerateData(m1t, nrow=N)
# write.table(ds1, file='dataWls1.dat', row.names=FALSE, col.names=FALSE)
#------------------------------------------------------------------------------
# Generate Data for tau-equivalent 1 Factor Model
m2t <- omxSetParameters(m1t, labels=paste0('load', 1:p), newlabels='load',
values=1, free=FALSE, name="OneFOrdTau")
set.seed(41)
ds2 <- mxGenerateData(m2t, nrow=N)
#------------------------------------------------------------------------------
# Generate Data for 2 Factor Model
# TODO
#m3t <- mxModel(model="TwoFOrd")
#------------------------------------------------------------------------------
# Fit null and alternative models when null is false
# Data from "congeneric" factor model
# (i.e., general 1 factor model with various loadings)
# Fit congeneric and tau-equivalent models
# Null is false
m1 <- mxModel(m1t, mxData(ds1, 'raw'), mxFitFunctionWLS('DWLS'))
m2 <- omxSetParameters(m1, labels=paste0('load', 1:p), newlabels='load',
values=1, free=FALSE, name="OneFOrdTau")
m1r <- mxRun(m1)
m2r <- mxRun(m2)
(cmp <- mxCompare(m1r, m2r))
#------------------------------------------------------------------------------
# Fit null and alternative models when null is true
# Data from tau-equivalent factor model
# Fit congeneric and tau-equivalent models
# Null is true
n1 <- mxModel(m1, mxData(ds2, 'raw'))
n2 <- mxModel(m2, mxData(ds2, 'raw'))
n1r <- mxRun(n1)
n2r <- mxRun(n2)
(ncmp <- mxCompare(n1r, n2r))
#------------------------------------------------------------------------------
# What is asymCov in relation to useWeight?
#plot(
# diag(solve(diag(diag(m1r$data$observedStats$asymCov))))/N/N,
# diag(m1r$data$observedStats$useWeight))
#abline(a=0, b=1)
# Check relation with omxCheckCloseEnough()
ascov <- diag(solve(diag(diag(m1r$data$observedStats$asymCov))))/N/N
aswei <- diag(m1r$data$observedStats$useWeight)
omxCheckCloseEnough(ascov, aswei, 1e-10)
#------------------------------------------------------------------------------
# Specify model in lavaan
runLavaan <- FALSE
if(runLavaan){
require(lavaan)
lavFull <- '
# Fix first factor loadings
f1 =~ 1*x1 + x2 + x3 + x4
# Estimate factor variance
f1 ~~ varF1*f1
# Fix factor mean to 0
f1 ~ 0*1
# Fix intercepts to zero
x1 ~ 0*1
x2 ~ 0*1
x3 ~ 0*1
x4 ~ 0*1
# Fix residual variances to 1
x1 ~~ 1*x1
x2 ~~ 1*x2
x3 ~~ 1*x3
x4 ~~ 1*x4
# Estimate thresholds
x1 | t1
x1 | t2
x1 | t3
x2 | t1
x2 | t2
x2 | t3
x3 | t1
x3 | t2
x3 | t3
x4 | t1
x4 | t2
x4 | t3'
lavTau <- '
# Fix first factor loadings
f1 =~ 1*x1 + 1*x2 + 1*x3 + 1*x4
# Estimate factor variance
f1 ~~ varF1*f1
# Fix factor mean to 0
f1 ~ 0*1
# Fix intercepts to zero
x1 ~ 0*1
x2 ~ 0*1
x3 ~ 0*1
x4 ~ 0*1
# Fix residual variances to 1
x1 ~~ 1*x1
x2 ~~ 1*x2
x3 ~~ 1*x3
x4 ~~ 1*x4
# Estimate thresholds
x1 | t1
x1 | t2
x1 | t3
x2 | t1
x2 | t2
x2 | t3
x3 | t1
x3 | t2
x3 | t3
x4 | t1
x4 | t2
x4 | t3'
lmo <- lavaan(lavFull, data=ds1, parameterization='theta', estimator='WLS')
lmt <- lavaan(lavTau, data=ds1, parameterization='theta', estimator='WLS')
lno <- lavaan(lavFull, data=ds2, parameterization='theta', estimator='WLS')
lnt <- lavaan(lavTau, data=ds2, parameterization='theta', estimator='WLS')
lmo <- lavaan(lavFull, data=ds1, parameterization='theta', estimator='WLS')
summary(lmo)$test$standard$stat # chi
lmo <- lavaan(lavFull, data=ds1, parameterization='theta', estimator='WLSMV', test='mean.var.adjusted')
summary(lmo)$test$standard$stat # fit
summary(lmo)$test$mean.var.adjusted$scaling.factor # mvadjust
summary(lmo)$test$mean.var.adjusted$df # dfstar
summary(lmo)$test$mean.var.adjusted$stat # chimv
lmo <- lavaan(lavFull, data=ds1, parameterization='theta', estimator='WLSMV', test='Satorra.Bentler')
summary(lmo)$test$satorra.bentler$scaling.factor # madjust
summary(lmo)$test$satorra.bentler$stat # chim
}
# Hard coded results from lavaan 2023-01-09, packageVersion('lavaan') 0.6.12
lavo <- c(chi=2.027596, fit=0.9178031, mvadjust=0.4546067,
dfstar=1.998749, chimv=2.018895,
madjust=0.4543222, chim=2.020159)
opmo <- c(chi=m1r$output$chi, fit=m1r$output$fit, mvadjust=m1r$output$chiMVadjust,
dfstar=m1r$output$chiDoFstar, chimv=m1r$output$chiMV,
madjust=m1r$output$chiMadjust, chim=m1r$output$chiM)
omxCheckCloseEnough(opmo, lavo, .0005)
# lmo <- lavaan(lavFull, data=ds1, parameterization='theta', estimator='WLSM')
# lmt <- lavaan(lavTau, data=ds1, parameterization='theta', estimator='WLSM')
# anova(lmo, lmt, method='satorra.bentler.2001')
# cmp
omxCheckCloseEnough(cmp$SBchisq[2], 52.236, .02)
# lno <- lavaan(lavFull, data=ds2, parameterization='theta', estimator='WLSM')
# lnt <- lavaan(lavTau, data=ds2, parameterization='theta', estimator='WLSM')
# anova(lno, lnt, method='satorra.bentler.2001')
# ncmp
omxCheckCloseEnough(ncmp$SBchisq[2], 1.7838, .02)
#------------------------------------------------------------------------------
# Check on analytic gradients for WLS
mgrad <- mxOption(m1, 'Major iterations', 1)
mrgrad <- suppressWarnings(mxRun(mgrad))
hi <- mxRun(mxModel(mrgrad, mxComputeJacobian()))
J <- hi$compute$output$jacobian
ho <- suppressWarnings(mxRun(mxModel(mrgrad, mxComputeNumericDeriv())))
g <- ho$compute$output$gradient$central/N
W <- mrgrad$data$observedStats$useWeight
obs <- c(
c(mrgrad$data$observedStats$thresholds),
vechs(mrgrad$data$observedStats$cov))
mi <- mxGetExpected(mrgrad, 'standVector')
# Hand check fit function computation
omxCheckCloseEnough(
as.numeric(mrgrad$fitfunction$result),
t(obs - mi) %*% W %*% (obs - mi),
1e-10)
# Analytic and numeric gradients
anagrad <- -2 * t(J) %*% W %*% (obs - mi)
numgrad <- g #mrgrad$output$gradient works for SLSQP, but not NPSOL
# plot(cbind(anagrad, numgrad))
# text(anagrad, numgrad, labels=names(numgrad))
omxCheckCloseEnough(anagrad, numgrad, 1e-5)
omxCheckCloseEnough(sum(abs(anagrad - numgrad)), 0, 1e-5)
#------------------------------------------------------------------------------
# Another form of RAM gradient
# I need to account for the quadratic function from the
# parameters to the summary statistics in the model.
# That is, there's another step in the chain rule:
# RAM -> MVN -> summary stats -> fit function
# RAM gradiet/Jacobian
amat <- mrgrad$A$values
smat <- mrgrad$S$values
fmat <- mrgrad$F$values
imat <- diag(1, nrow=nrow(amat))
uinv <- solve(imat - amat)
dA <- matrix(0, nrow=nrow(amat), ncol=ncol(amat))
dA[2, 5] <- 1
dS <- matrix(0, nrow=nrow(amat), ncol=ncol(amat))
D <- -uinv %*% (imat - dA) %*% uinv
B <- D %*% smat %*% t(uinv)
dC <- fmat %*% (B + uinv %*% dS %*% t(uinv) + t(B)) %*% t(fmat)
#------------------------------------------------------------------------------
# End
|