1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135
|
# ==================================================================================
# = This is a 1-factor model of 2 continuous variables, and 3 factors =
# = Two definition variables are created (coded with a "c" suffix ?) =
# = In RAM models, you add a definition variable as a fake latent with no variance =
# = with its mean set to "data.defnVar" =
# ==================================================================================
# TODO: Change the file name: "exoPredWLS.R" is not discoverable
library(OpenMx)
# Make the results repeatable (unclear if this is needed?)
set.seed(1)
data("jointdata", package ="OpenMx", verbose= TRUE)
# ==========================================
# = Here's what our input data looks like: =
# ==========================================
str(jointdata)
# Make z1c = z1 + some noise;
jointdata$z1c <- with(jointdata, z1 * .1 + rnorm(nrow(jointdata)))
# and z2c which is just a column of noise with a mean = the mean factor level of z2 (no clue why as yet...)
jointdata$z2c <- with(jointdata, rnorm(nrow(jointdata), mean=unclass(z2)*.2))
# =============================================
# = Build a function to create WLS RAM models =
# =============================================
# note: This makes the script more complex, but will allow some programatic generation below
buildModel <- function(manifests= paste0('z', 1:5), type = 'WLS', slopes= TRUE) {
exoFree <- NULL
if (slopes) {
exoFree <- matrix(TRUE, length(manifests), 2)
exoFree[5,] <- FALSE
exoFree[4,1] <- FALSE
}
jr <- mxModel("JointRAM", type= "RAM",
manifestVars = manifests,
# TODO: is this legit (to use a var name found in the data as a latent name?)
latentVars = c('G','z1c','z2c'),
mxPath('one', c('z1', 'z3'), free= TRUE, labels= c('z1','z3')),
mxPath(paste0('z', c(1,3)), arrows= 2, free= TRUE, values= .5),
# ordinal variables have fixed variance and no mean
# TODO: why var = .5?
mxPath(paste0('z', c(2,4,5)), arrows= 2, free= FALSE, values= .5),
# latent scaled to var of 1 (mean is fixed at zero by default)
mxPath('G', arrows= 2, values= 1, free= FALSE),
mxPath('G', to = manifests, free= TRUE, values= 1, lbound= 0),
mxThreshold('z2', 1, free=TRUE, labels="z2_thresh1"),
mxThreshold('z4', 3, free=TRUE, labels=paste0("z4_thresh",1:3)),
mxThreshold('z5', 2, free=TRUE, labels=paste0("z5_thresh",1:2)),
# Note: Data are raw, despite our using WLS
mxData(jointdata, type = "raw", verbose= 0L, exoFree=exoFree),
# Note: this call to mxFitFunctionWLS is all that's
# required to make a model into WLS!
mxFitFunctionWLS(type)
)
# TODO: "slopes" is means?
if(slopes){
jr <- mxModel(jr,
mxPath('one', to = 'z1c', free= FALSE, labels= "data.z1c"),
mxPath('one', to = 'z2c', free= FALSE, labels= "data.z2c"),
mxPath('z1c', to = 'z1', labels= "r1"),
mxPath('z2c', to = 'z2', labels= "r2"))
}
# TODO: Shouldn't we have a call to mxExpectationRAM or LISREL??? here???
# mxExpectationRAM(M = NA, dimnames = NA, thresholds = "T", threshnames = ???)
return(jr)
}
jointRAM1 <- buildModel()
jointRAM1 <- mxRun(jointRAM1)
omxCheckCloseEnough(jointRAM1$data$observedStats$z1.vcov,
vcov(lm(z1 ~ z1c + z2c, jointdata)))
# glm binomial is set up a little different
# omxCheckCloseEnough(jointRAM1$data$observedStats$z2.vcov,
# vcov(glm(z2 ~ z1c + z2c, jointdata, family = binomial(link="probit"))),
# .01)
omxCheckCloseEnough(jointRAM1$data$observedStats$z3.vcov,
vcov(lm(z3 ~ z1c + z2c, jointdata)))
perm <- c(2,3,4,1)
omxCheckCloseEnough(jointRAM1$data$observedStats$z4.vcov,
vcov(MASS::polr(z4 ~ z2c, jointdata, method="probit"))[perm,perm], 1e-7)
omxCheckCloseEnough(jointRAM1$data$observedStats$z5.vcov,
vcov(MASS::polr(z5 ~ 1, jointdata, method="probit")), 1e-8)
summary(jointRAM1)
# plot(jointRAM1) # (if using umx)
# Where do these come from?
#cat(deparse(round(unname(coef(jointRAM1)),4)))
param <- c(0.5929, 0.5773, 0.661, 0.6089, 0.1722, 0.0851, 0.0274, 0.5475,
0.4579, 7.9062, 2.0767, 0.0563, -0.3714, 0.1242, 0.7867, -0.6529,
-0.2965)
omxCheckCloseEnough(coef(jointRAM1), param, 1e-3)
#cat(deparse(round(unname(c(jointRAM1$output$standardErrors)),4)))
param.se <- c(0.0616, 0.1021, 0.0682, 0.094, 0.0657, 0.0566, 0.0682, 0.057,
0.065, 0.0754, 0.0601, 0.0741, 0.0783, 0.0728, 0.0925, 0.0653,
0.0586)
omxCheckCloseEnough(c(jointRAM1$output$standardErrors), param.se, 1e-3)
# ===============================================================
# = Switch jointRAM1 from MxFitFunctionWLS to an ML fitfunction =
# = to compare the estimates of these two approaches =
# ===============================================================
jointRAM2 <- mxModel(jointRAM1, mxFitFunctionML())
jointRAM2 <- mxRun(jointRAM2)
summary(jointRAM2)
estCmp <- cbind(coef(jointRAM2), coef(jointRAM1))
omxCheckCloseEnough(cor(estCmp)[2,1], 1, 1e-4)
seCmp <- cbind(jointRAM2$output$standardErrors, jointRAM1$output$standardErrors)
omxCheckCloseEnough(cor(seCmp)[2,1], 1, .05)
# ===============================================================
# = Iterate over model types allowed by the buildModel function =
# ===============================================================
mani = paste0('z', 5:1)
for (slopes in c(TRUE,FALSE)) {
for (type in c('WLS','DWLS','ULS')) {
jm3 <- buildModel(type=type, slopes=slopes)
#jm3$data$verbose <- 1L
jm3 <- mxRun(jm3)
jm4 <- mxModel(buildModel(manifests = mani, type=type, slopes=slopes), jm3$data)
jm4 <- mxRun(jm4)
}
}
|