1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182
|
library(OpenMx)
library(rpf)
set.seed(9)
numItems <- 30
i1 <- rpf.drm(multidimensional=TRUE)
items <- list()
items[1:numItems] <- list(i1)
correct <- matrix(NA, 4, numItems)
for (x in 1:numItems) correct[,x] <- rpf.rparam(i1, version=1)
correct[1,] <- 1
correct[3,] <- logit(0)
correct[4,] <- logit(1)
ip.mat <- mxMatrix(name="item", nrow=4, ncol=numItems,
values=c(1,0, logit(0), logit(1)),
free=c(FALSE, TRUE, FALSE, FALSE))
colnames(ip.mat) <- paste("i", 1:numItems, sep="")
rownames(ip.mat) <- c('f1', 'b','g','u')
m.mat <- mxMatrix(name="mean", nrow=1, ncol=1, values=0, free=TRUE)
rownames(m.mat) <- 'f1'
cov.mat <- mxMatrix(name="cov", nrow=1, ncol=1, values=1, free=TRUE)
dimnames(cov.mat) <- list('f1','f1')
latent <- mxModel('latent', m.mat, cov.mat,
mxDataDynamic("cov", expectation="latentTest.expectation"),
mxExpectationNormal(covariance="cov", means="mean"),
mxFitFunctionML())
# We generate data in the "wrong" order to preserve compatibility
# with the previous version of the test.
data <- rpf.sample(500, items, correct, cov=matrix(5,1,1))
ldata <- rpf.sample(300, items, correct, mean=.5, cov=matrix(5,1,1))
ip.fix <- ip.mat
ip.fix$free[,] <- FALSE
ip.fix$values[,] <- correct
if (0) {
plan <- mxComputeEM('expectation', 'scores',
mxComputeGradientDescent(paste('latent',c('mean','cov'), sep="."),
fitfunction="latent.fitfunction"),
verbose=0L)
}
plan <- mxComputeIterate(list(
mxComputeOnce('expectation', 'scores'),
mxComputeGradientDescent(paste('latent',c('mean','cov'), sep="."),
fitfunction="latent.fitfunction"),
mxComputeOnce('expectation'),
mxComputeOnce('fitfunction', 'fit')))
m1 <- mxModel(model="latentTest", ip.fix, latent,
mxData(observed=ldata, type="raw"),
mxExpectationBA81(items, mean="latent.mean", cov="latent.cov"),
mxFitFunctionML(),
plan)
m1Fit <- mxRun(m1)
omxCheckCloseEnough(m1Fit$output$estimate, c(.46, 4.44), .1)
omxCheckCloseEnough(m1Fit$output$fit, 8251.09, .01)
latent.plan <- NULL
if (1) {
latent.plan <- mxComputeGradientDescent('latent.cov', fitfunction="latent.fitfunction")
} else {
latent.plan <-
mxComputeSequence(list(mxComputeOnce('expectation'),
mxComputeOnce('expectation', "latentDistribution", "copy"),
mxComputeOnce('fitfunction', "set-starting-values")),
freeSet='latent.cov')
}
latent$mean$free[,] <- FALSE
latent$data$expectation <- "drmmg.expectation"
m2 <- mxModel(model="drmmg", ip.mat, latent,
mxData(observed=data, type="raw"),
mxExpectationBA81(items, mean="latent.mean", cov="latent.cov"),
mxFitFunctionML(),
mxComputeEM('expectation', 'scores',
mxComputeSequence(list(
mxComputeNewtonRaphson(freeSet='item'),
latent.plan)),
verbose=0L))
m2 <- mxRun(m2)
omxCheckCloseEnough(m2$output$fit, 14129.94, .01)
omxCheckCloseEnough(m2$submodels$latent$matrices$cov$values[1,1], 4.377, .01)
emstat <- m2$compute$output
omxCheckCloseEnough(emstat$EMcycles, 29, 4)
#omxCheckCloseEnough(emstat$totalMstep, 763, 20) # includes the latent distribution
#print(m2$matrices$item$values)
#print(correct.mat)
mask <- is.finite(correct)
got <- cor(c(m2$matrices$item$values[mask]),
c(correct[mask]))
omxCheckCloseEnough(got, .994, .01)
if (1) {
ip.mat <- mxMatrix(name="item", nrow=4, ncol=numItems,
values=c(1,0, logit(0), logit(1)),
free=c(TRUE, TRUE, FALSE, FALSE))
colnames(ip.mat) <- paste("i", 1:numItems, sep="")
rownames(ip.mat) <- c('f1', 'b','g','u')
ip.mat$labels[1,] <- 'a1'
m2 <- mxModel(model="drmmg", ip.mat,
mxData(observed=data, type="raw"),
mxExpectationBA81(ItemSpec=items),
mxFitFunctionML(),
mxComputeSequence(steps=list(
mxComputeOnce('expectation', 'scores'),
mxComputeOnce('fitfunction', c('gradient', 'hessian', 'ihessian')),
mxComputeReportDeriv()
)))
deriv <- mxRun(m2, silent=TRUE)
omxCheckCloseEnough(deriv$output$ihessian, solve(deriv$output$hessian), 1e-4)
if (0) {
m3 <- mxModel(m2, mxComputeSequence(list(
mxComputeOnce('fitfunction', 'fit'),
mxComputeNumericDeriv(parallel=FALSE, iterations=2L),
mxComputeReportDeriv())))
deriv <- mxRun(m3)
stop("ok")
}
m2 <- mxModel(model="drmmg", ip.mat,
mxData(observed=data, type="raw"),
mxExpectationBA81(ItemSpec=items),
mxFitFunctionML(),
mxComputeEM('expectation', 'scores',
mxComputeNewtonRaphson(freeSet='item')))
m2 <- mxRun(m2)
emstat <- m2$compute$output
omxCheckCloseEnough(emstat$EMcycles, 21, 1)
omxCheckCloseEnough(emstat$totalMstep, 56, 5)
omxCheckCloseEnough(m2$fitfunction$result, 14129.04, .01)
omxCheckCloseEnough(m2$matrices$item$values[1,], rep(2.133, numItems), .002)
# correct values are from flexMIRT
est <- c(-0.838622, -1.02653, -0.0868472, -0.251784, 0.953364, 0.735258, 0.606918,
1.04239, 0.466055, -2.05196, -0.0456446, -0.320668, -0.362073, 2.02502,
0.635298, -0.0731132, -2.05196, -0.0456446, -1.17429, 0.880002, -0.838622,
-0.838622, 1.02747, 0.424094, -0.584298, 0.663755, 0.663755, 0.064287, 1.38009,
1.01259 )
omxCheckCloseEnough(m2$matrices$item$values[2,], est, .002)
}
if (0) {
library(mirt)
rdata <- sapply(data, unclass)-1
# for flexMIRT, write CSV
#write.table(rdata, file="ifa-drm-mg.csv", quote=FALSE, row.names=FALSE, col.names=FALSE)
pars <- mirt(rdata, 1, itemtype="2PL", D=1, quadpts=49, pars='values')
pars[pars$name=="a1",'value'] <- 1
pars[pars$name=="a1",'est'] <- FALSE
pars[pars$name=="COV_11",'est'] <- TRUE
fit <- mirt(rdata, 1, itemtype="2PL", D=1, quadpts=49, pars=pars)
# LL -7064.519 * -2 = 14129.04
got <- coef(fit)
print(got$GroupPars)
# COV 4.551
got$GroupPars <- NULL
round(m2$matrices$item$values - simplify2array(got), 2)
# MH-RM takes forever, not run
pars <- confmirt(rdata, 1, itemtype="2PL", D=1, quadpts=49, pars='values')
pars[pars$name=="a1",'value'] <- 1
pars[pars$name=="a1",'est'] <- FALSE
pars[pars$name=="COV_11",'est'] <- TRUE
fit <- confmirt(rdata, 1, itemtype="2PL", D=1, quadpts=49, pars=pars)
got <- coef(fit)
got$GroupPars <- NULL
round(m2$matrices$item$values - sapply(got, function(l) l[1,]), 2)
}
|