1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206
|
#options(error = browser)
library(OpenMx)
library(rpf)
set.seed(9)
numItems <- 20
items <- list()
items[1:numItems] <- list(rpf.grm(outcomes=2)) # equivalent to 2PL
# create random item parameters
correct <- sapply(items, rpf.rparam, version=1)
# simulate data
data.g1 <- rpf.sample(500, items, correct)
data.g2 <- rpf.sample(500, items, correct, mean=-1, cov=matrix(5,1,1))
data.g3 <- rpf.sample(500, items, correct, mean=1, cov=matrix(.5,1,1))
if (0) {
# for flexMIRT, write CSV
write.table(sapply(data.g1, unclass)-1, file="drm-mg2-g1.csv", quote=FALSE, row.names=FALSE, col.names=FALSE)
write.table(sapply(data.g2, unclass)-1, file="drm-mg2-g2.csv", quote=FALSE, row.names=FALSE, col.names=FALSE)
write.table(sapply(data.g3, unclass)-1, file="drm-mg2-g3.csv", quote=FALSE, row.names=FALSE, col.names=FALSE)
}
# This create an IFA model for each group. Item parameters are
# constrained equal across groups.
mkgroup <- function(model.name, data, latent.free) {
ip.mat <- mxMatrix(name="item", nrow=2, ncol=numItems,
values=c(1,0), free=TRUE)
colnames(ip.mat) <- colnames(data)
rownames(ip.mat) <- c('f1', 'b')
for (ix in 1:numItems) {
for (px in 1:2) {
name <- paste(c('p',ix,',',px), collapse='')
ip.mat$labels[px,ix] <- name
}
}
dims <- 1
m.mat <- mxMatrix(name="mean", nrow=1, ncol=dims, values=0)
rownames(m.mat) <- "f1"
cov.mat <- mxMatrix(name="cov", nrow=dims, ncol=dims, values=diag(dims))
dimnames(cov.mat) <- list("f1", "f1")
mean <- "mean"
cov <- "cov"
if (latent.free) {
lm <- paste(model.name, "latent", sep="")
mean <- paste(lm, "expMean", sep=".")
cov <- paste(lm, "expCov", sep=".")
}
m1 <- mxModel(model=model.name, ip.mat, m.mat, cov.mat,
mxData(observed=data, type="raw"),
mxExpectationBA81(ItemSpec=items, mean=mean, cov=cov,
verbose=ifelse(latent.free, 0L, 0L)),
mxFitFunctionML())
m1
}
g1 <- mkgroup("g1", data.g1, FALSE)
g2 <- mkgroup("g2", data.g2, TRUE)
g3 <- mkgroup("g3", data.g3, TRUE)
groups <- paste("g", 1:3, sep="")
# Cannot test derivatives at starting values because Hessian starts very close to singular.
# This create a latent distribution model that can be used to impose
# equality constraints on latent distribution parameters.
mklatent <- function(name) {
mMat <- mxMatrix(nrow=1, ncol=1, free=T, values=0, name="expMean")
rownames(mMat) <- "f1"
covMat <- mxMatrix(type="Symm", nrow=1, ncol=1, free=T, values=1, name="expCov")
dimnames(covMat) <- list("f1", "f1")
m1 <- mxModel(paste(name, "latent", sep=""), mMat, covMat,
mxDataDynamic("cov", expectation=paste(name, "expectation", sep=".")),
mxExpectationNormal(covariance="expCov", means="expMean"),
mxFitFunctionML())
m1
}
latent <- mxModel("latent", mxFitFunctionMultigroup(paste0(groups[-1],"latent")))
g2.latent <- mklatent("g2")
g3.latent <- mklatent("g3")
latent.vargroup <- apply(expand.grid(paste(groups[-1], "latent", sep=""), c('expMean','expCov')),
1, paste, collapse='.')
latent.plan <- NULL # need a plan for latent distribution parameters
if (0) {
# Copy latent distribution parameters from current estimates without transformation.
latent.plan <- mxComputeSequence(list(mxComputeOnce(paste(groups, 'expectation', sep='.')),
mxComputeOnce(paste(groups, 'expectation', sep='.'),
"latentDistribution", "copy"), # c('mean','covariance')
mxComputeOnce('fitfunction', "set-starting-values")),
freeSet=latent.vargroup)
} else {
# Obtain latent distribution parameters via mxExpectationNormal.
# This permits equality constraints (and potentially more complex latent structure).
# latent.plan <- mxComputeGradientDescent(latent.vargroup, fitfunction="latent.fitfunction")
latent.plan <- mxComputeNewtonRaphson(latent.vargroup, fitfunction="latent.fitfunction")
}
grpModel <- mxModel(model="groupModel", g1, g2, g3, g2.latent, g3.latent, latent,
mxFitFunctionMultigroup(groups),
mxComputeSequence(list(
mxComputeEM(paste(groups, 'expectation', sep='.'), 'scores',
mxComputeSequence(list(
mxComputeNewtonRaphson(freeSet=paste(groups,'item',sep=".")),
latent.plan)),
information="mr1991", verbose=0L,
tolerance=1e-10,
infoArgs=list(fitfunction=c("fitfunction", "latent.fitfunction"))),
mxComputeStandardError(),
mxComputeHessianQuality(),
mxComputeOnce(c('fitfunction', paste0('g',2:3,'latent.fitfunction')),
'gradient'),
mxComputeReportDeriv())))
#grpModel <- mxOption(grpModel, "Number of Threads", 1)
grpModel <- mxOption(grpModel, "Checkpoint Units", "iterations")
grpModel <- mxOption(grpModel, "Checkpoint Count", 1)
grpModel <- mxRun(grpModel) #, checkpoint = TRUE
#dm <- grpModel$compute$steps[[1]]$debug$rateMatrix
omxCheckCloseEnough(max(abs(grpModel$output$gradient)), 0, .17)
omxCheckCloseEnough(grpModel$output$fit, 30114.94, .02)
omxCheckEquals(grpModel$output$fitUnits, "-2lnL")
omxCheckCloseEnough(AIC(logLik(grpModel)), 30202.95, .02)
omxCheckCloseEnough(BIC(logLik(grpModel)), 30436.73, .02)
omxCheckCloseEnough(summary(grpModel)$informationCriteria['AIC:','par'], 30202.95, .02)
omxCheckCloseEnough(summary(grpModel)$informationCriteria['BIC:','par'], 30436.73, .02)
omxCheckCloseEnough(grpModel$submodels$g2latent$matrices$expMean$values, -.834, .01)
omxCheckCloseEnough(grpModel$submodels$g2latent$matrices$expCov$values, 3.93, .01)
omxCheckCloseEnough(grpModel$submodels$g3latent$matrices$expMean$values, .933, .01)
omxCheckCloseEnough(grpModel$submodels$g3latent$matrices$expCov$values, .444, .01)
emstat <- grpModel$compute$steps[[1]]$output
if (0) {
# Optimization path has too much variance
omxCheckCloseEnough(emstat$EMcycles, 50, 4)
omxCheckCloseEnough(emstat$totalMstep, 380, 12)
omxCheckCloseEnough(emstat$semProbeCount, 90, 15)
# cat(deparse(round(grpModel$output$standardErrors, 3)))
semse <- c(0.069, 0.077, 0.074, 0.077, 0.094, 0.097, 0.125, 0.111, 0.069, 0.074,
0.132, 0.116, 0.08, 0.081, 0.209, 0.163, 0.102, 0.133, 0.114, 0.107,
0.205, 0.151, 0.068, 0.077, 0.073, 0.138, 0.078, 0.081, 0.088, 0.087,
0.061, 0.068, 0.125, 0.11, 0.084, 0.09, 0.094, 0.094, 0.092, 0.089,
0.11, 0.399, 0.068, 0.055)
omxCheckCloseEnough(c(grpModel$output$standardErrors), semse, .03)
omxCheckCloseEnough(log(grpModel$output$conditionNumber), 5.1, .5)
omxCheckTrue(grpModel$output$infoDefinite)
}
refModels <- mxRefModels(grpModel, run=TRUE)
ind <- refModels[['Independence']]
omxCheckCloseEnough(ind$output$fit, 38588.19, .01)
omxCheckCloseEnough(summary(ind)$informationCriteria['AIC:','par'], 38628.187, .02)
omxCheckCloseEnough(summary(ind)$informationCriteria['BIC:','par'], 38734.451, .02)
i1 <- mxModel(grpModel,
mxComputeSequence(steps=list(
mxComputeOnce('fitfunction', 'information', "meat"),
mxComputeStandardError(),
mxComputeHessianQuality())))
i1 <- mxRun(i1)
#cat(deparse(round(i1$output$standardErrors,3)))
se <- c(0.071, 0.078, 0.076, 0.079, 0.097, 0.099, 0.132, 0.117, 0.075,
0.077, 0.135, 0.121, 0.081, 0.083, 0.215, 0.169, 0.111, 0.141,
0.121, 0.113, 0.213, 0.159, 0.074, 0.082, 0.077, 0.139, 0.084,
0.087, 0.095, 0.09, 0.064, 0.07, 0.135, 0.115, 0.091, 0.095, 0.097,
0.098, 0.096, 0.093, 0.12, 0.512, 0.072, 0.057)
omxCheckCloseEnough(c(i1$output$standardErrors), se, .01)
omxCheckCloseEnough(log(i1$output$conditionNumber), 5.6, .5)
if (0) {
library(mirt)
rdata <- sapply(data, unclass)-1
# for flexMIRT, write CSV
#write.table(rdata, file="ifa-drm-mg.csv", quote=FALSE, row.names=FALSE, col.names=FALSE)
pars <- mirt(rdata, 1, itemtype="2PL", D=1, quadpts=49, pars='values')
pars[pars$name=="a1",'value'] <- 1
pars[pars$name=="a1",'est'] <- FALSE
pars[pars$name=="COV_11",'est'] <- TRUE
fit <- mirt(rdata, 1, itemtype="2PL", D=1, quadpts=49, pars=pars)
# LL -7064.519 * -2 = 14129.04
got <- coef(fit)
print(got$GroupPars)
# COV 4.551
got$GroupPars <- NULL
round(m2$matrices$item$values - simplify2array(got), 2)
}
|