File: mxSE_test.R

package info (click to toggle)
r-cran-openmx 2.21.1%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 14,412 kB
  • sloc: cpp: 36,577; ansic: 13,811; fortran: 2,001; sh: 1,440; python: 350; perl: 21; makefile: 5
file content (61 lines) | stat: -rw-r--r-- 1,884 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
#
#   Copyright 2007-2020 by the individuals mentioned in the source code history
#
#   Licensed under the Apache License, Version 2.0 (the "License");
#   you may not use this file except in compliance with the License.
#   You may obtain a copy of the License at
#
#        http://www.apache.org/licenses/LICENSE-2.0
#
#   Unless required by applicable law or agreed to in writing, software
#   distributed under the License is distributed on an "AS IS" BASIS,
#   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#   See the License for the specific language governing permissions and
#   limitations under the License.

require(OpenMx)

#mxOption(key="Parallel diagnostics", value = "Yes")

set.seed(1611150)
x <- matrix(rnorm(1000,sd=2))
colnames(x) <- "x"

varmod <- mxModel(
	"mod",
	mxData(observed=x,type="raw"),
	mxMatrix(type="Full",nrow=1,ncol=1,free=T,values=0,labels="mu",name="Mu"),
	mxMatrix(type="Full",nrow=1,ncol=1,free=T,values=4,labels="sigma2",name="Sigma2",lbound=0),
	mxExpectationNormal(covariance="Sigma2",means="Mu",dimnames=c("x")),
	mxAlgebra(sqrt(Sigma2),name="Sigma"),
	mxFitFunctionML()
)
varrun <- mxRun(varmod)

sdmod <- mxModel(
	"mod",
	mxData(observed=x,type="raw"),
	mxMatrix(type="Full",nrow=1,ncol=1,free=T,values=0,labels="mu",name="Mu"),
	mxMatrix(type="Full",nrow=1,ncol=1,free=T,values=2,labels="sigma",name="Sigma",lbound=0),
	mxExpectationNormal(covariance="Sigma2",means="Mu",dimnames=c("x")),
	mxAlgebra(Sigma^2,name="Sigma2"),
	mxFitFunctionML()
)
sdrun <- mxRun(sdmod)

omxCheckCloseEnough(
	varrun$output$standardErrors[2],
	mxSE(x=Sigma2,model=sdrun),
	5e-6
)

omxCheckCloseEnough(
	sdrun$output$standardErrors[2],
	mxSE(x=Sigma,model=varrun),
	1e-6
)

omxCheckCloseEnough(mxSE(sigma^2, sdrun), mxSE(sigma2, varrun), 5e-6)

obj <- 'sigma2'
omxCheckCloseEnough(mxSE(obj, varrun), mxSE(sigma2, varrun), 1e-10)