1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141
|
#
# Copyright 2007-2020 by the individuals mentioned in the source code history
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# This test is adapted from Hermine's oneACEo.R .
# It's a monophenotype ACE model with an ordinal trait, and uses an equality MxConstraint to identify the model.
# The script deliberately puts the MxConstraint into the container MxModel, the MZ submodel, and the DZ submodel,
# thereby making it redundant.
library(OpenMx)
library(testthat)
#library(polycor)
# ----------------------------------------------------------------------------------------------------------------------
# PREPARE DATA
# Load Data
data(twinData)
dim(twinData)
# Create Ordinal Variables
nth <- 3 # number of thresholds
ordData <- data.frame(obmi1= twinData[,'bmi1'],
obmi2= twinData[,'bmi2'], zyg= twinData[,'zyg'])
quant <- quantile(ordData[,c('obmi1','obmi2')],(0:(nth+1))/(nth+1),na.rm=TRUE)
for (i in c('obmi1','obmi2')) { ordData[,i] <- cut(ordData[,i], breaks=quant, labels=c(0:nth)) }
# Select Variables for Analysis
vars <- 'obmi' # list of variables names
nv <- 1 # number of variables
ntv <- nv*2 # number of total variables
selVars <- paste(vars,c(rep(1,nv),rep(2,nv)),sep="")
# Select Data for Analysis
mzData <- subset(ordData, zyg==1, selVars)
dzData <- subset(ordData, zyg==3, selVars)
mzDataF <- mxFactor( x=mzData, levels=c(0:nth) )
dzDataF <- mxFactor( x=dzData, levels=c(0:nth) )
# Generate Descriptive Statistics
sapply(mzData,table)
sapply(dzData,table)
# Set Starting Values
svLTh <- -1.5 # start value for first threshold
svITh <- 1 # start value for increments
svTh <- matrix(rep(c(svLTh,(rep(svITh,nth-1)))),nrow=nth,ncol=nv) # start value for thresholds
lbTh <- matrix(rep(c(-3,(rep(0.001,nth-1))),nv),nrow=nth,ncol=nv) # lower bounds for thresholds
svPa <- .5 # start value for path coefficient
svPe <- .7 # start value for path coefficient for e
lbPa <- .0001 # lower bound for path coefficient
# ----------------------------------------------------------------------------------------------------------------------
# PREPARE MODEL
# Create Algebra for expected Mean & Threshold Matrices
meanG <- mxMatrix( type="Zero", nrow=1, ncol=ntv, name="meanG" )
thinG <- mxMatrix(
type="Full", nrow=nth, ncol=ntv, free=TRUE, values=svTh, lbound=lbTh,
labels=c("t11","t12","t13","t21","t22","t23"), name="thinG" )
inc <- mxMatrix( type="Lower", nrow=nth, ncol=nth, free=FALSE, values=1, name="inc" )
threG <- mxAlgebra( expression= inc %*% thinG, name="threG" )
# Create Matrices for Path Coefficients
pathA <- mxMatrix( type="Lower", nrow=nv, ncol=nv, free=TRUE, values=svPa, label="a11", lbound=lbPa, name="a" )
pathC <- mxMatrix( type="Lower", nrow=nv, ncol=nv, free=TRUE, values=svPa, label="c11", lbound=lbPa, name="c" )
pathE <- mxMatrix( type="Lower", nrow=nv, ncol=nv, free=TRUE, values=svPe, label="e11", lbound=lbPa, name="e" )
# Create Algebra for Variance Components
covA <- mxAlgebra( expression=a %*% t(a), name="A" )
covC <- mxAlgebra( expression=c %*% t(c), name="C" )
covE <- mxAlgebra( expression=e %*% t(e), name="E" )
# Create Algebra for expected Variance/Covariance Matrices in MZ & DZ twins
covP <- mxAlgebra( expression= A+C+E, name="V" )
covMZ <- mxAlgebra( expression= A+C, name="cMZ" )
covDZ <- mxAlgebra( expression= 0.5%x%A+ C, name="cDZ" )
expCovMZ <- mxAlgebra( expression= rbind( cbind(V, cMZ), cbind(t(cMZ), V)), name="expCovMZ" )
expCovDZ <- mxAlgebra( expression= rbind( cbind(V, cDZ), cbind(t(cDZ), V)), name="expCovDZ" )
# Constrain Variance of Binary Variables
var1 <- mxConstraint( expression=diag2vec(V)==1, name="Var1" )
# Create Data Objects for Multiple Groups
dataMZ <- mxData( observed=mzDataF, type="raw" )
dataDZ <- mxData( observed=dzDataF, type="raw" )
# Create Expectation Objects for Multiple Groups
expMZ <- mxExpectationNormal( covariance="expCovMZ", means="meanG", dimnames=selVars, thresholds="threG" )
expDZ <- mxExpectationNormal( covariance="expCovDZ", means="meanG", dimnames=selVars, thresholds="threG" )
funML <- mxFitFunctionML()
# Create Model Objects for Multiple Groups
pars <- list( meanG, thinG, inc, threG, covA, pathA, pathC, pathE, covC, covE, covP )
modelMZ <- mxModel( pars, covMZ, expCovMZ, dataMZ, expMZ, funML, var1, name="MZ" )
modelDZ <- mxModel( pars, covDZ, expCovDZ, dataDZ, expDZ, funML, var1, name="DZ" )
multi <- mxFitFunctionMultigroup( c("MZ","DZ") )
# Create Algebra for Variance Components
rowVC <- rep('VC',nv)
colVC <- rep(c('A','C','E','SA','SC','SE'),each=nv)
estVC <- mxAlgebra( expression=cbind(A,C,E,A/V,C/V,E/V), name="VC", dimnames=list(rowVC,colVC) )
# Create Confidence Interval Objects
ciACE <- mxCI( "VC[1,1:3]" )
# Build Model with Confidence Intervals
modelACE <- mxModel( "oneACEo", pars, var1, modelMZ, modelDZ, multi, estVC, ciACE )
if(mxOption(NULL,"Default optimizer")!="CSOLNP"){
fitACE <- mxRun( modelACE, intervals=F )
summary(fitACE)
modelACE2 <- modelACE
modelACE2$MZ@constraints <- list()
modelACE2$DZ@constraints <- list()
fitACE2 <- mxRun(modelACE2,intervals=F)
summary(fitACE2)
omxCheckCloseEnough(coef(fitACE), coef(fitACE2), 1e-7)
omxCheckCloseEnough(fitACE$output$standardErrors, fitACE2$output$standardErrors, 1e-7)
omxCheckCloseEnough(fitACE$output$fit, fitACE2$output$fit, 1e-7)
} else{
plan <- omxDefaultComputePlan()
plan$steps <- list(GD=plan$steps$GD)
plan$steps$GD <- mxComputeNelderMead(eqConstraintMthd="GDsearch")
modelACE <- mxModel(modelACE, plan)
fitACE <- expect_warning(mxRun(modelACE),NA)
summary(fitACE)
}
|