File: regularize.R

package info (click to toggle)
r-cran-openmx 2.21.1%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 14,412 kB
  • sloc: cpp: 36,577; ansic: 13,811; fortran: 2,001; sh: 1,440; python: 350; perl: 21; makefile: 5
file content (134 lines) | stat: -rw-r--r-- 4,284 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
library(OpenMx)
library(testthat)

set.seed(1)

D <- 6

randomCov <- function() {
  cf <- matrix(0, D,D)
  cf[lower.tri(cf, FALSE)] <- runif(D * (D-1)/2, -.8, .8)
  diag(cf) <- rnorm(D, mean = 1.2, sd = .1)
  dat <- cf %*% t(cf)
  dimnames(dat) <- list(paste0('x',1:D),paste0('x',1:D))
  dat
}

label <- matrix(NA, D,D)
diag(label) <- paste0('d',1:D)
label[lower.tri(label)] <- paste0('c', 1:(D * (D-1)/2))

regGroup <- cut(1:(D * (D-1)/2), 3)
levels(regGroup) <- c('lasso', 'ridge', 'elasticNet')

m1 <- mxModel(
  'm1',
  mxData(randomCov(), type = 'cov', numObs = 100),
  mxMatrix('Symm', D,D, TRUE, values=diag(D) + .2,
           labels=label[lower.tri(label,TRUE)],
           dimnames=list(paste0('x',1:D),paste0('x',1:D)),
           name="cov"),
  mxMatrix(nrow=1, ncol=2, free=TRUE, values=c(.4, .4),
           labels=c('lambda','alpha')),
  mxExpectationNormal('cov'),
  mxFitFunctionML(),
  mxPenaltyLASSO(what = paste0('c', 1:(D * (D-1)/2))[regGroup=='lasso'],
                    name = "lasso", epsilon=.01),
  mxPenaltyRidge(what = paste0('c', 1:(D * (D-1)/2))[regGroup=='ridge'],
                         name = "ridge", epsilon=.01),
  mxPenaltyElasticNet(what = paste0('c', 1:(D * (D-1)/2))[regGroup=='elasticNet'],
                    name = "en", epsilon=.01, lambda.step=.01,
                    alpha = .4, alpha.max = .4))

m1 <- mxModel(m1, lapply(
  m1$penalties,
  function(reg) {
    reg$hpranges$lambda <- 400*reg$hpranges$lambda
    reg
  }))

if (0) {
  m1 <- mxOption(m1,"Always Checkpoint","Yes")
  m1 <- mxOption(m1,"Checkpoint Units","evaluations")
  m1 <- mxOption(m1,"Checkpoint Count",1)
  m1 <- mxOption(m1, "Checkpoint Fullpath", "/dev/fd/2")
}

expect_equal(mxEval(lasso, m1), matrix(0,0,0))
expect_equivalent(mxEval(lasso, m1, compute = TRUE), matrix(0.4, 1, 1))

for (rep in 1:10) {
  fit1 <- mxModel(m1,
                  mxData(randomCov(), type = 'cov', numObs = 100))


  mxOption(key="Analytic Gradients", value="Yes")

  fit1 <- mxRun(mxModel(fit1,
                        mxComputeSequence(list(
                          mxComputeOnce('fitfunction', c('fit','gradient')),
                          mxComputeReportDeriv()))), silent = TRUE)
  expect_equal(fit1$output$evaluations, 2)

  # Added correctly?  
  expect_equal(sum(
    fit1$fitfunction$result[1,1],
    sapply(fit1$penalties, function(x) x$result[1,1])),
    fit1$output$fit)

  # Also test mxEval
  expect_equal(fit1$fitfunction$result[1,1],
               mxEval(fitfunction, fit1, compute = TRUE)[1,1])
  for (p1 in fit1$penalties) {
    expect_equivalent(fit1[[p1$name]]$result[1,1],
                      mxEvalByName(p1$name, fit1, compute = TRUE)[1,1])
  }

  mxOption(key="Analytic Gradients", value="No")

  fit2 <- mxRun(mxModel(fit1,
                        mxComputeSequence(list(
                          mxComputeOnce('fitfunction', c('fit','gradient')),
                          mxComputeReportDeriv()))), silent = TRUE)
  expect_true(fit2$output$evaluations > 2)

  expect_equal(fit1$output$gradient, fit2$output$gradient, 1e-6)
}

m1 <- expect_warning(mxPenaltySearch(m1),
                     "model does not satisfy the first-order optimality conditions")

detail <- m1$compute$steps$PS$output$detail

limit <- c(lasso=1, ridge=11, elasticNet=2)
for (cx in 1:(D * (D-1)/2)) {
  col <- paste0('c', cx)
#  print(paste(regGroup[cx], col))
  val <- abs(detail[[col]])
  val[val < 0.01] <- 0
  if (all(diff(val) <= 0)) next
  thr <- limit[regGroup[cx]]
  expect_equivalent(table(diff(val) <= 0)["FALSE"], 0, thr)
}

# Try with fixed hyperparam
m3 <- omxSetParameters(m1, labels = c('lambda','alpha'), free = FALSE)
expect_equivalent(mxEval(lasso, m3),
                  mxEval(lasso, m3, compute = TRUE))
m3 <- mxRun(m3)
expect_equivalent(mxEval(lasso, m3),
                  mxEval(lasso, m3, compute = TRUE))

m2 <- mxPenaltyZap(m1, silent = TRUE)
expect_error(summary(m2), "This model is in an inconsistent state.")
fit2 <- mxRun(m2)
expect_equal(fit2$output$fit, 853.759, 1e-2)

m3 <- m1
m3$fitfunction$applyPenalty <- FALSE
fit3 <- mxRun(m3)

expect_equivalent(sapply(fit3$penalties, function(x) x$result[1,1]),
             rep(0,3))
expect_equal(fit3$fitfunction$result[1,1], fit3$output$fit)
expect_true(mxEval(lasso, fit3, compute = TRUE) != 0)