File: test_mxBootstrapStdizeRAMpaths.R

package info (click to toggle)
r-cran-openmx 2.21.1%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 14,412 kB
  • sloc: cpp: 36,577; ansic: 13,811; fortran: 2,001; sh: 1,440; python: 350; perl: 21; makefile: 5
file content (86 lines) | stat: -rw-r--r-- 2,937 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
#
#   Copyright 2007-2018 by the individuals mentioned in the source code history
#
#   Licensed under the Apache License, Version 2.0 (the "License");
#   you may not use this file except in compliance with the License.
#   You may obtain a copy of the License at
# 
#        http://www.apache.org/licenses/LICENSE-2.0
# 
#   Unless required by applicable law or agreed to in writing, software
#   distributed under the License is distributed on an "AS IS" BASIS,
#   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#   See the License for the specific language governing permissions and
#   limitations under the License.

# -----------------------------------------------------------------------------
# Adapted from demo/BivariateSaturated_PathRaw.R  
# -----------------------------------------------------------------------------

require(OpenMx)
require(MASS)
# Load Libraries
# -----------------------------------------------------------------------------

set.seed(200)
rs=.5
xy <- mvtnorm::rmvnorm (1000, c(0,0), matrix(c(1,rs,rs,1),2,2))
testData <- xy
testData <- testData[, order(apply(testData, 2, var))[2:1]] #put the data columns in order from largest to smallest variance
# Note: Users do NOT have to re-order their data columns.  This is only to make data generation the same on different operating systems: to fix an inconsistency with the mvtnorm::rmvnorm function in the MASS package.
selVars <- c("X","Y")
dimnames(testData) <- list(NULL, selVars)
summary(testData)
cov(testData)
# Simulate Data
# -----------------------------------------------------------------------------

bivSatModel2 <- mxModel("bivSat2",
												manifestVars= selVars,
												mxPath(
													from=c("X", "Y"), 
													arrows=2, 
													free=T, 
													values=1, 
													lbound=.01, 
													labels=c("varX","varY")
												),
												mxPath(
													from="X", 
													to="Y", 
													arrows=2, 
													free=T, 
													values=.2, 
													lbound=.01, 
													labels="covXY"
												),
												mxPath(
													from="one",
													to=c("X", "Y"),
													arrows=1,
													free=T),
												mxData(
													observed=testData, 
													type="raw", 
												),
												type="RAM"
)

bivSatFit2 <- mxRun(bivSatModel2)
EM2 <- mxEval(M, bivSatFit2)
EC2 <- mxEval(S, bivSatFit2)
LL2 <- mxEval(objective, bivSatFit2)
SL2 <- summary(bivSatFit2)$SaturatedLikelihood
Chi2 <- LL2-SL2
# Example 2: Saturated Model with Raw Data and Path input
# -----------------------------------------------------------------------------

omxCheckCloseEnough(LL2, 5407.037,.001)
omxCheckCloseEnough(c(EC2),c(1.066, 0.475, 0.475, 0.929),.001)
omxCheckCloseEnough(c(EM2),c(0.058, 0.006),.001)


#Now, make sure the following runs:
bivSatFit2 <- mxBootstrap(bivSatFit2)
mxBootstrapStdizeRAMpaths(bivSatFit2)