1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378
|
** Mx startup successful **
**Mx-OSX version 1.69**
!------------------------------------------------------+
! Latent class analysis via Mx |
! marginal ml again |
! data from http://www.people.vcu.edu/~nhenry/LSA50.htm|
! see |
! Latent Class Probs Item 1 Item 2 Item 3 Item 4 |
! .4243 .9240 .6276 .5704 .5125 |
! .5757 .4324 .1871 .1008 .0635 |
! Mx recovers: |
! .4440 0.90736 0.61444 0.55828 0.50176 |
! .5560 0.42838 0.18218 .09394 .05627 |
!------------------------------------------------------+
#ngroups 2 ! number of groups in run
The following MX script lines were read for group 1
#NGROUPS 2
Note: #NGroup set number of groups to 2
#define $nvar 5 ! Number of variables altogether, before selection
#define nclass 2
#define $nclass 2
#define nv 4 ! number of variables in model
#define ncov 0 ! number of covariates
#define nclassncov 0 ! nclass * ncov
#define ncnv 8 ! number of variables * number of classes
#define $allvar1 Armyrun Favatt squaredeal welfare freq
#define $covariates FHTTLPR1 FHTTLPR2
#define $variables Armyrun Favatt squaredeal welfare freq
#define $frequencies TRUE
#define $freqlabel freq
#define maxcat 1 ! Maximum score of any item
#define maxcatnc 2 ! Must be maxcat times nclass
!-------------------------------------------------------------------
Group 1: Fit the model
Data Ninput=$nvar Nmodel=$nclass
ORdinal File=lazarsfeld.ord
Ordinal data read initiated
Note: Maximum ordinal/rectangular record length is: 1000
Note: It be increased by maxrec= parameter on the data line.
NOTE: Rectangular file contained 16 records with data
that contained a total of 80 observations
LAbels
$allvar1
!Select if sex = 0
SElect
#if ncov > 0
$variables
$covariates ;
Definition $covariates ;
#else
$variables ;
#endif
#if $frequencies = TRUE
Definition $freqlabel ;
NOTE: Selection yields 16 data vectors for analysis
NOTE: Vectors contain a total of 80 observations
NOTE: Definition yields 16 data vectors for analysis
NOTE: Vectors contain a total of 64 observations
#end if
Begin matrices;
A full nclass 1
#if ncov > 0
P unit nv ncov
K Full nv nclassncov ! regressions of response probabilities on covariates
S full ncov 1 ! vector of observed covariates
X full nclass ncov ! For regression of class membership probs on covaria
tes
#else
P unit nv 1
K Full nv nclass ! Not required except to make algebra work with no cov
ariates
D full 1 1 ! Not required except to make algebra work
S full 1 1 ! Not required except to make algebra work
X full nclass 1 ! For regression of class membership probs on covariates
#endif
E full 1 nv
F unit maxcat 1
G lower maxcat maxcat
T full maxcatnc nv Free ! thresholds, z-score metric for class probabiliti
es
! note that columns are thresholds within variable
s
I iden nclass nclass
Q full 1 1 ! for frequency if used
R iden nv nv
U unit 1 1
V unit nv 1
W full nclass 1 free ! class membership probabilities
End Matrices;
!
! Be kind to Mx, fix thresholds that are not going anywhere
!
Value 1 G 1 1 - G maxcat maxcat
#if ncov > 0
Specify S $covariates
#endif
#if $frequencies = TRUE
Specify Q $freqlabel
#end if
Matrix W .2 .8
Begin Algebra;
End Algebra;
Thresholds (I@G)*T+(K*(I@S))' ;
Covariance R;
#if $frequencies = TRUE
Frequency Q;
#end if
#if ncov > 0
Specify S $covariates
#endif
#if $frequencies = TRUE
Specify Q $freqlabel
#end if
Matrix W .2 .8
Begin Algebra;
End Algebra;
Thresholds (I@G)*T+(K*(I@S))' ;
Covariance R;
#if $frequencies = TRUE
Frequency Q;
#end if
#if ncov > 0
Weight (W+X*S)@(\sum(W+X*S)~); ! adjusted for covariates
#else
Weight W ;
#endif
Option onecov
Option func=1.e-9
End Group;
The following MX script lines were read for group 2
Constrain Un-regressed Weights to sum to 1
Constraint
Begin Matrices;
W full nclass 1 = W1
I unit 1 1
End Matrices;
Constraint I = \sum(W);
End
Summary of VL file data for group 1
FREQ ARMYRUN FAVATT SQUAREDEAL WELFARE
Code -1.0000 1.0000 2.0000 3.0000 4.0000
Number 16.0000 16.0000 16.0000 16.0000 16.0000
Mean 62.5000 0.5000 0.5000 0.5000 0.5000
Variance 3973.2500 0.2500 0.2500 0.2500 0.2500
Minimum 3.0000 0.0000 0.0000 0.0000 0.0000
Maximum 229.0000 1.0000 1.0000 1.0000 1.0000
PARAMETER SPECIFICATIONS
GROUP NUMBER: 1
Group 1: Fit the model
MATRIX A
This is a FULL matrix of order 2 by 1
It has no free parameters specified
MATRIX D
This is a FULL matrix of order 1 by 1
It has no free parameters specified
MATRIX E
This is a FULL matrix of order 1 by 4
It has no free parameters specified
MATRIX F
This is a UNIT matrix of order 1 by 1
MATRIX G
This is a LOWER TRIANGULAR matrix of order 1 by 1
It has no free parameters specified
MATRIX I
This is an IDENTITY matrix of order 2 by 2
MATRIX K
This is a FULL matrix of order 4 by 2
It has no free parameters specified
MATRIX P
This is a UNIT matrix of order 4 by 1
MATRIX Q
This is a FULL matrix of order 1 by 1
1
1 -1
MATRIX R
This is an IDENTITY matrix of order 4 by 4
MATRIX S
This is a FULL matrix of order 1 by 1
It has no free parameters specified
MATRIX T
This is a FULL matrix of order 2 by 4
1 2 3 4
1 1 2 3 4
2 5 6 7 8
MATRIX U
This is a UNIT matrix of order 1 by 1
MATRIX V
This is a UNIT matrix of order 4 by 1
MATRIX W
This is a FULL matrix of order 2 by 1
1
1 9
2 10
MATRIX X
This is a FULL matrix of order 2 by 1
It has no free parameters specified
GROUP NUMBER: 2
Constrain Un-regressed Weights to sum to 1
MATRIX I
This is a UNIT matrix of order 1 by 1
MATRIX W
This is a FULL matrix of order 2 by 1
1
1 9
2 10
Mx starting optimization; number of parameters = 10
MX PARAMETER ESTIMATES
GROUP NUMBER: 1
Group 1: Fit the model
MATRIX A
This is a FULL matrix of order 2 by 1
1
1 0.0000
2 0.0000
MATRIX D
This is a FULL matrix of order 1 by 1
1
1 0.0000
MATRIX E
This is a FULL matrix of order 1 by 4
1 2 3 4
1 0.0000 0.0000 0.0000 0.0000
MATRIX F
This is a UNIT matrix of order 1 by 1
MATRIX G
This is a LOWER TRIANGULAR matrix of order 1 by 1
1
1 1.0000
MATRIX I
This is an IDENTITY matrix of order 2 by 2
MATRIX K
This is a FULL matrix of order 4 by 2
1 2
1 0.0000 0.0000
2 0.0000 0.0000
3 0.0000 0.0000
4 0.0000 0.0000
MATRIX P
This is a UNIT matrix of order 4 by 1
MATRIX Q
This is a FULL matrix of order 1 by 1
1
1 229.0000
MATRIX R
This is an IDENTITY matrix of order 4 by 4
MATRIX S
This is a FULL matrix of order 1 by 1
1
1 0.0000
MATRIX T
This is a FULL matrix of order 2 by 4
1 2 3 4
1 -1.3247 -0.2909 -0.1466 -0.0044
2 0.1805 0.9071 1.3169 1.5869
MATRIX U
This is a UNIT matrix of order 1 by 1
MATRIX V
This is a UNIT matrix of order 4 by 1
MATRIX W
This is a FULL matrix of order 2 by 1
1
1 0.4440
2 0.5560
MATRIX X
This is a FULL matrix of order 2 by 1
1
1 0.0000
2 0.0000
GROUP NUMBER: 2
Constrain Un-regressed Weights to sum to 1
MATRIX I
This is a UNIT matrix of order 1 by 1
MATRIX W
This is a FULL matrix of order 2 by 1
1
1 0.4440
2 0.5560
Your model has 10 estimated parameters and 65 Observed statistics
Observed statistics include 1 constraints.
-2 times log-likelihood of data >>> 4696.444
Degrees of freedom >>>>>>>>>>>>>>>> 55
Akaike's Information Criterion >>>> 4586.444
Bayesian Information Criterion >>>> 2271.976
Sample size Adjusted BIC >>>> 2356.133
Deviance Information Criterion >>>> 2322.518
This problem used 0.0% of my workspace
Task Time elapsed (DD:HH:MM:SS)
Reading script & data 0: 0: 0: 0.01
Execution 0: 0: 0: 0.03
TOTAL 0: 0: 0: 0.04
Total number of warnings issued: 0
______________________________________________________________________________
______________________________________________________________________________
|