File: mxDataWLS.Rd

package info (click to toggle)
r-cran-openmx 2.21.1%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 14,412 kB
  • sloc: cpp: 36,577; ansic: 13,811; fortran: 2,001; sh: 1,440; python: 350; perl: 21; makefile: 5
file content (115 lines) | stat: -rwxr-xr-x 4,499 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
%
%   Copyright 2007-2021 by the individuals mentioned in the source code history
%
%   Licensed under the Apache License, Version 2.0 (the "License");
%   you may not use this file except in compliance with the License.
%   You may obtain a copy of the License at
% 
%        http://www.apache.org/licenses/LICENSE-2.0
% 
%   Unless required by applicable law or agreed to in writing, software
%   distributed under the License is distributed on an "AS IS" BASIS,
%   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
%   See the License for the specific language governing permissions and
%   limitations under the License.

\name{mxDataWLS}
\alias{mxDataWLS}
\alias{MxDataLegacyWLS-class}

\title{Create legacy MxData Object for Least Squares (WLS, DWLS, ULS) Analyses}

\description{
   This function creates a new \link{MxData} object of type 
   \dQuote{ULS} (unweighted least squares), \dQuote{WLS} (weighted least squares) 
   or \dQuote{DWLS} (diagonally-weighted least squares). The appropriate
   fit function to include with these models is \code{\link{mxFitFunctionWLS}}

	\emph{note}: This function continues to work, but is deprecated. Use \link{mxData} and \link{mxFitFunctionWLS} instead.
}

\usage{
   mxDataWLS(data, type = "WLS", useMinusTwo = TRUE, returnInverted = TRUE, 
    fullWeight = TRUE, suppressWarnings = TRUE, allContinuousMethod =
   c("cumulants", "marginals"), silent=!interactive())
}

\arguments{
   \item{data}{A matrix or data.frame which provides raw data to be used for WLS.}
   \item{type}{A character string 'WLS' (default), 'DWLS', or 'ULS' for
   weighted, diagonally weighted, or unweighted least squares, respectively}
   \item{useMinusTwo}{Logical indicating whether to use -2LL (default) or -LL.}
   \item{returnInverted}{Logical indicating whether to return the information matrix (default) or the covariance matrix.}
   \item{fullWeight}{Logical determining if the full weight matrix is
   returned (default). Needed for standard error and quasi-chi-squared
   calculation.}
   \item{suppressWarnings}{Logical that determines whether to suppress
   diagnostic warnings. These warnings are likely only helpful to developers.}
   \item{allContinuousMethod}{A character string 'cumulants' (default) or
   'marginals'. See mxFitFunctionWLS.}
   \item{silent}{Whether to report progress}
}

\details{
The mxDataWLS function creates an \link{MxData} object, which can be used in
\link{MxModel} objects.  This function takes raw data and returns an \code{MxData} object to be used in a model to fit with weighted least squares.

\emph{note}: This function continues to work, but is deprecated. Use \link{mxData} and \link{mxFitFunctionWLS} instead.
}

\value{
    Returns a new \link{MxData} object.
}

\references{
The OpenMx User's guide can be found at \url{https://openmx.ssri.psu.edu/documentation/}.

Browne, M. W. (1984).  Asymptotically Distribution-Free Methods for the Analysis of Covariance Structures. \emph{British Journal of Mathematical and Statistical Psychology}, \strong{37}, 62-83.
}

\seealso{
\link{mxFitFunctionWLS}.  \link{MxData} for the S4 class created by mxData. \link{matrix} and \link{data.frame} for objects which may be entered as arguments in the \sQuote{observed} slot. More information about the OpenMx package may be found \link[=OpenMx]{here}. 
}

\examples{

# Create and fit a model using mxMatrix, mxAlgebra, mxExpectationNormal, and mxFitFunctionWLS

library(OpenMx)

# Simulate some data

x=rnorm(1000, mean=0, sd=1)
y= 0.5*x + rnorm(1000, mean=0, sd=1)
tmpFrame <- data.frame(x, y)
tmpNames <- names(tmpFrame)
wdata <- mxDataWLS(tmpFrame)

# Define the matrices


S <- mxMatrix(type = "Full", nrow = 2, ncol = 2, values=c(1,0,0,1), 
              free=c(TRUE,FALSE,FALSE,TRUE), labels=c("Vx", NA, NA, "Vy"), name = "S")
A <- mxMatrix(type = "Full", nrow = 2, ncol = 2, values=c(0,1,0,0), 
              free=c(FALSE,TRUE,FALSE,FALSE), labels=c(NA, "b", NA, NA), name = "A")
I <- mxMatrix(type="Iden", nrow=2, ncol=2, name="I")

# Define the expectation

expCov <- mxAlgebra(solve(I-A) \%*\% S \%*\% t(solve(I-A)), name="expCov")
expFunction <- mxExpectationNormal(covariance="expCov", dimnames=tmpNames)

# Choose a fit function

fitFunction <- mxFitFunctionWLS()

# Define the model

tmpModel <- mxModel(model="exampleModel", S, A, I, expCov, expFunction, fitFunction, 
                    wdata)

# Fit the model and print a summary

tmpModelOut <- mxRun(tmpModel)
summary(tmpModelOut)
}