File: mxDescribeDataWLS.Rd

package info (click to toggle)
r-cran-openmx 2.21.1%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 14,412 kB
  • sloc: cpp: 36,577; ansic: 13,811; fortran: 2,001; sh: 1,440; python: 350; perl: 21; makefile: 5
file content (63 lines) | stat: -rw-r--r-- 2,209 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/MxFitFunctionWLS.R
\name{mxDescribeDataWLS}
\alias{mxDescribeDataWLS}
\title{Determine whether a dataset will have weights and summary statistics for the means if used with mxFitFunctionWLS}
\usage{
mxDescribeDataWLS(
  data,
  allContinuousMethod = c("cumulants", "marginals"),
  verbose = FALSE
)
}
\arguments{
\item{data}{the (currently raw) data being used in a \code{\link{mxFitFunctionWLS}} model.}

\item{allContinuousMethod}{the method used to process data when all columns are continuous.}

\item{verbose}{logical. Whether to report diagnostics.}
}
\value{
- list describing the data.
}
\description{
Given either a data.frame or an mxData of type raw, this function determines whether \code{mxFitFunctionWLS}
will generate expectations for means.
}
\details{
All-continuous data processed using the "cumulants" method lack means, while
all continuous data processed with allContinuousMethod = "marginals" will have means.

When data are not all continuous, allContinuousMethod is ignored, and means are modelled.
}
\examples{

# ====================================
# = All continuous, data.frame input =
# ====================================

tmp = mxDescribeDataWLS(mtcars, allContinuousMethod= "cumulants", verbose = TRUE)
tmp$hasMeans # FALSE - no means with cumulants
tmp = mxDescribeDataWLS(mtcars, allContinuousMethod= "marginals")
tmp$hasMeans # TRUE we get means with marginals

# ==========================
# = mxData object as input =
# ==========================
tmp = mxData(mtcars, type="raw")
mxDescribeDataWLS(tmp, allContinuousMethod= "cumulants", verbose = TRUE)$hasMeans # FALSE
mxDescribeDataWLS(tmp, allContinuousMethod= "marginals")$hasMeans  # TRUE

# =======================================
# = One var is a factor: Means modelled =
# =======================================
tmp = mtcars
tmp$cyl = factor(tmp$cyl)
mxDescribeDataWLS(tmp, allContinuousMethod= "cumulants")$hasMeans # TRUE - always has means
mxDescribeDataWLS(tmp, allContinuousMethod= "marginals")$hasMeans # TRUE

}
\seealso{
- \code{\link{mxFitFunctionWLS}}, \code{\link{omxAugmentDataWithWLSSummary}}
}
\concept{Data Functions}