File: mxExpectationBA81.Rd

package info (click to toggle)
r-cran-openmx 2.21.1%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 14,412 kB
  • sloc: cpp: 36,577; ansic: 13,811; fortran: 2,001; sh: 1,440; python: 350; perl: 21; makefile: 5
file content (213 lines) | stat: -rw-r--r-- 8,381 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/MxExpectationBA81.R
\name{mxExpectationBA81}
\alias{mxExpectationBA81}
\alias{MxExpectationBA81-class}
\alias{show,MxExpectationBA81-method}
\alias{print,MxExpectationBA81-method}
\title{Create a Bock & Aitkin (1981) expectation}
\usage{
mxExpectationBA81(
  ItemSpec,
  item = "item",
  ...,
  qpoints = 49L,
  qwidth = 6,
  mean = "mean",
  cov = "cov",
  verbose = 0L,
  weightColumn = NA_integer_,
  EstepItem = NULL,
  debugInternal = FALSE
)
}
\arguments{
\item{ItemSpec}{a single item model (to replicate) or a list of
item models in the same order as the column of \code{ItemParam}}

\item{item}{the name of the mxMatrix holding item parameters
with one column for each item model with parameters starting at
row 1 and extra rows filled with NA}

\item{...}{Not used.  Forces remaining arguments to be specified by name.}

\item{qpoints}{number of points to use for equal interval quadrature integration (default 49L)}

\item{qwidth}{the width of the quadrature as a positive Z score (default 6.0)}

\item{mean}{the name of the mxMatrix holding the mean vector}

\item{cov}{the name of the mxMatrix holding the covariance matrix}

\item{verbose}{the level of runtime diagnostics (default 0L)}

\item{weightColumn}{the name of the column in the data containing the row weights (DEPRECATED)}

\item{EstepItem}{a simple matrix of item parameters for the
E-step. This option is mainly of use for debugging derivatives.}

\item{debugInternal}{when enabled, some of the internal tables are
returned in $debug. This is mainly of use to developers.}
}
\description{
Used in conjunction with \link{mxFitFunctionML}, this expectation
models ordinal data with a modest number of latent dimensions.
Currently, only a multivariate Normal latent distribution is
supported.  An equal-interval quadrature is used to integrate over
the latent distribution.  When all items use the graded response
model and items are assumed conditionally independent then item
factor analysis is equivalent to a factor model.
}
\details{
The conditional likelihood of response \eqn{x_{ij}}{x[i,j]} to
item \eqn{j} from person \eqn{i} with item parameters
\eqn{\xi_j}{\xi[j]} and latent ability \eqn{\theta_i}{\theta[i]} is

\deqn{L(x_i|\xi,\theta_i) = \prod_j \mathrm{Pr}(\mathrm{pick}=x_{ij} | \xi_j,\theta_i).}{%
L(x[i]|\xi,\theta[i]) = \prod_j Pr(pick=x[i,j] | \xi[j],\theta[i]).}

Items are assumed to be conditionally independent.
That is, the outcome of one item is assumed to not influence
another item after controlling for \eqn{\xi} and \eqn{\theta_i}{\theta[i]}.

The unconditional likelihood is obtained by integrating over
the latent distribution \eqn{\theta_i}{\theta[i]},

\deqn{L(x_i|\xi) = \int L(x_i|\xi, \theta_i) L(\theta_i) \mathrm{d}\theta_i.}{%
L(x[i]|\xi) = \int L(x[i]|\xi, \theta[i]) L(\theta[i]) d \theta[i].}

With an assumption that examinees are independently and identically distributed,
we can sum the individual log likelihoods,

\deqn{\mathcal{L}=\sum_i \log L(x_i | \xi).}{%
L=\sum_i \log L(x[i] | \xi).}

Response models \eqn{\mathrm{Pr}(\mathrm{pick}=x_{ij} |
\xi_j,\theta_i)}{Pr(pick=x[i,j] | \xi[j],\theta[i])}
are not implemented in OpenMx, but are imported
from the \href{https://cran.r-project.org/package=rpf}{RPF}
package. You must pass a list of models obtained from the RPF
package in the `ItemSpec' argument. All item models must use the
same number of latent factors although some of these factor
loadings can be constrained to zero in the item parameter matrix.
The `item' matrix contains item parameters with one item per
column in the same order at ItemSpec.

The `qpoints' and `qwidth' argument control the fineness and
width, respectively, of the equal-interval quadrature grid.  The
integer `qpoints' is the number of points per dimension. The
quadrature extends from negative qwidth to positive qwidth for
each dimension. Since the latent distribution defaults to standard
Normal, qwidth can be regarded as a value in Z-score units.

The optional `mean' and `cov' arguments permit modeling of the
latent distribution in multigroup models (in a single group, the
latent distribution must be fixed). A separate latent covariance
model is used in combination with mxExpectationBA81. The point
mass distribution contained in the quadrature is converted into a
multivariate Normal distribution by
\link{mxDataDynamic}. Typically \link{mxExpectationNormal} is used
to fit a multivariate Normal model to these data. Some intricate
programming is required.  Examples are given in the manual.
mxExpectationBA81 uses a sample size of \eqn{N} for the covariance
matrix. This differs from \link{mxExpectationNormal} which uses a
sample size of \eqn{N-1}.

The `verbose' argument enables diagnostics that are mainly of
interest to developers.

When a two-tier covariance matrix is recognized, this expectation
automatically enables analytic dimension reduction (Cai, 2010).

The optional `weightColumn' is superseded by the weight
argument in \link{mxData}. For data with many repeated
response patterns, model evaluation time can be
reduced. An easy way to transform your data into this form is to
use \link[rpf]{compressDataFrame}. Non-integer weights are supported except for
\link[rpf]{EAPscores}.

mxExpectationBA81 requires \link{mxComputeEM}. During a typical
optimization run, latent abilities are assumed for examinees
during the E-step.  These examinee scores are implied by the
previous iteration's parameter vector. This can be overridden
using the `EstepItem' argument.  This is mainly of use to
developers for checking item parameter derivatives.

Common univariate priors are available from
\link[ifaTools]{univariatePrior}.  The standard Normal
distribution of the quadrature acts like a prior distribution for
difficulty. It is not necessary to impose any additional Bayesian
prior on difficulty estimates (Baker & Kim, 2004, p. 196).

Many estimators are available for standard errors. Oakes is
recommended (see \link{mxComputeEM}).  Also available are
Supplement EM (\link{mxComputeEM}), Richardson extrapolation
(\link{mxComputeNumericDeriv}), likelihood-based confidence
intervals (\link{mxCI}), and the covariance of the rowwise
gradients.
}
\examples{
library(OpenMx)
library(rpf)

numItems <- 14

# Create item specifications
spec <- list()
for (ix in 1:numItems) { spec[[ix]] <- rpf.grm(outcomes=sample(2:7, 1)) }
names(spec) <- paste("i", 1:numItems, sep="")

# Generate some random "true" parameter values
correct.mat <- mxSimplify2Array(lapply(spec, rpf.rparam))

# Generate some example data
data <- rpf.sample(500, spec, correct.mat)

# Create a matrix of item parameters with starting values
imat <- mxMatrix(name="item",
                 values=mxSimplify2Array(lapply(spec, rpf.rparam)))
rownames(imat)[1] <- 'f1'
imat$free[!is.na(correct.mat)] <- TRUE
imat$values[!imat$free] <- NA

# Create a compute plan
plan <- mxComputeSequence(list(
  mxComputeEM('expectation', 'scores',
              mxComputeNewtonRaphson(), information="oakes1999",
              infoArgs=list(fitfunction='fitfunction')),
  mxComputeHessianQuality(),
  mxComputeStandardError(),
  mxComputeReportDeriv()))

# Build the OpenMx model
grmModel <- mxModel(model="grm1", imat,
                    mxData(observed=data, type="raw"),
                    mxExpectationBA81(ItemSpec=spec),
                    mxFitFunctionML(),
                    plan)

grmModel <- mxRun(grmModel)
summary(grmModel)
}
\references{
Bock, R. D., & Aitkin, M. (1981). Marginal maximum likelihood estimation of item
parameters: Application of an EM algorithm. \emph{Psychometrika, 46}, 443-459.

Cai, L. (2010). A two-tier full-information item factor analysis
model with applications. \emph{Psychometrika, 75}, 581-612.

Pritikin, J. N., Hunter, M. D., & Boker, S. M. (2015). Modular
open-source software for Item Factor Analysis. \emph{Educational and
Psychological Measurement, 75}(3), 458-474

Pritikin, J. N. & Schmidt, K. M. (in press). Model builder for
Item Factor Analysis with OpenMx. \emph{R Journal}.

Seong, T. J. (1990). Sensitivity of marginal maximum likelihood
estimation of item and ability parameters to the characteristics
of the prior ability distributions. \emph{Applied Psychological
Measurement, 14}(3), 299-311.
}
\seealso{
\href{https://cran.r-project.org/package=rpf}{RPF}
}