File: mxFitFunctionRow.Rd

package info (click to toggle)
r-cran-openmx 2.21.1%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 14,412 kB
  • sloc: cpp: 36,577; ansic: 13,811; fortran: 2,001; sh: 1,440; python: 350; perl: 21; makefile: 5
file content (111 lines) | stat: -rw-r--r-- 5,203 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
%
%   Copyright 2007-2021 by the individuals mentioned in the source code history
%
%   Licensed under the Apache License, Version 2.0 (the "License");
%   you may not use this file except in compliance with the License.
%   You may obtain a copy of the License at
% 
%        http://www.apache.org/licenses/LICENSE-2.0
% 
%   Unless required by applicable law or agreed to in writing, software
%   distributed under the License is distributed on an "AS IS" BASIS,
%   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
%   See the License for the specific language governing permissions and
%   limitations under the License.

% Author: Michael D. Hunter
% Revision History
%   Fri Oct 8 15:56:13 EDT 2010 - Created file
%                                 Modified from mxFIMLObjective.Rd


\name{mxFitFunctionRow}
\alias{mxFitFunctionRow}
\alias{MxFitFunctionRow-class}
\alias{print,MxFitFunctionRow-method}
\alias{show,MxFitFunctionRow-method}

\title{Create an MxFitFunctionRow Object}

\description{
mxFitFunctionRow returns an MxFitFunctionRow object.
}

\usage{
mxFitFunctionRow(rowAlgebra, reduceAlgebra, dimnames,
   rowResults = "rowResults", filteredDataRow = "filteredDataRow",
   existenceVector = "existenceVector", units="-2lnL")
}


\arguments{
   \item{rowAlgebra}{A character string indicating the name of the algebra to be evaluated row-wise.}
   \item{reduceAlgebra}{A character string indicating the name of the algebra that collapses the row results into a single number which is then optimized.}
   \item{dimnames}{A character vector of names corresponding to columns be extracted from the data set.}
   \item{rowResults}{The name of the auto-generated "rowResults" matrix.  See details.}
   \item{filteredDataRow}{The name of the auto-generated "filteredDataRow" matrix. See details.}
   \item{existenceVector}{The name of the auto-generated "existenceVector" matrix. See details.}
   \item{units}{(optional) The units of the fit statistic.}
}

\details{
Fit functions are functions for which free parameter values are optimized such that the value of a cost function is minimized.  The mxFitFunctionRow function evaluates a user-defined \link{MxAlgebra} object called the \sQuote{rowAlgebra} in a row-wise fashion.  It then stores results of the row-wise evaluation in another \link{MxAlgebra} object called the \sQuote{rowResults}.  Finally, the mxFitFunctionRow function collapses the row results into a single number which is then used for optimization.  The \link{MxAlgebra} object named by the \sQuote{reduceAlgebra} collapses the row results into a single number.

The \sQuote{filteredDataRow} is populated in a row-by-row fashion with all the non-missing data from the current row.  You cannot assume that the length of the filteredDataRow matrix remains constant (unless you have no missing data). The \sQuote{existenceVector} is populated in a row-by-row fashion with a value of 1.0 in column j if a non-missing value is present in the data set in column j, and a value of 0.0 otherwise. Use the functions \link{omxSelectRows}, \link{omxSelectCols}, and \link{omxSelectRowsAndCols} to shrink other matrices so that their dimensions will be conformable to the size of \sQuote{filteredDataRow}. 
}

\value{
Returns a new MxFitFunctionRow object. Only one MxFitFunction object should be included in each model.  There is no need for an MxExpectation object when using mxFitFunctionRow.
}

\seealso{
Other fit functions:
\code{\link{mxFitFunctionMultigroup}}, \code{\link{mxFitFunctionML}}, 
\code{\link{mxFitFunctionWLS}}, \code{\link{mxFitFunctionAlgebra}}, 
\code{\link{mxFitFunctionGREML}}, \code{\link{mxFitFunctionR}} 

More information about the OpenMx package may be found \link[=OpenMx]{here}. 
}

\references{
The OpenMx User's guide can be found at \url{https://openmx.ssri.psu.edu/documentation/}.
}

\examples{
# Model that adds two data columns row-wise, then sums that column
# Notice no optimization is performed here.

library(OpenMx)

xdat <- data.frame(a=rnorm(10), b=1:10) # Make data set
amod <- mxModel(model="example1",
            mxData(observed=xdat, type='raw'),
            mxAlgebra(sum(filteredDataRow), name = 'rowAlgebra'),
            mxAlgebra(sum(rowResults), name = 'reduceAlgebra'),
            mxFitFunctionRow(
                rowAlgebra='rowAlgebra',
                reduceAlgebra='reduceAlgebra',
                dimnames=c('a','b'))
)
amodOut <- mxRun(amod)
mxEval(rowResults, model=amodOut)
mxEval(reduceAlgebra, model=amodOut)

# Model that find the parameter that minimizes the sum of the
#  squared difference between the parameter and a data row.

bmod <- mxModel(model="example2",
            mxData(observed=xdat, type='raw'),
            mxMatrix(values=.75, ncol=1, nrow=1, free=TRUE, name='B'),
            mxAlgebra((filteredDataRow - B) ^ 2, name='rowAlgebra'),
            mxAlgebra(sum(rowResults), name='reduceAlgebra'),
            mxFitFunctionRow(
                rowAlgebra='rowAlgebra',
                reduceAlgebra='reduceAlgebra',
                dimnames=c('a'))
)
bmodOut <- mxRun(bmod)
mxEval(B, model=bmodOut)
mxEval(reduceAlgebra, model=bmodOut)
mxEval(rowResults, model=bmodOut)
}