1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39
|
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/MxPredict.R
\name{predict.MxModel}
\alias{predict.MxModel}
\title{\code{predict} method for \code{MxModel} objects}
\usage{
\method{predict}{MxModel}(
object,
newdata = NULL,
interval = c("none", "confidence", "prediction"),
method = c("ML", "WeightedML", "Regression", "Kalman"),
level = 0.95,
type = c("latent", "observed"),
...
)
}
\arguments{
\item{object}{an MxModel object from which predictions are desired}
\item{newdata}{an optional \code{data.frame} object. See details.}
\item{interval}{character indicating what kind of intervals are desired. 'none' gives no intervals, 'confidence', gives confidence intervals, 'prediction' gives prediction intervals.}
\item{method}{character the method used to create the predictions. See details.}
\item{level}{the confidence or predictions level, ignored if not using intervals}
\item{type}{character the type of thing you want predicted: latent variables or manifest variables.}
\item{...}{further named arguments}
}
\description{
\code{predict} method for \code{MxModel} objects
}
\details{
The \code{newdata} argument is either a \code{data.frame} or \code{MxData} object. In the latter case is replaces the data in the top level model. In the former case, it is passed as the \code{observed} argument of \code{mxData} with \code{type='raw'} and must accept the same further arguments as the data in the model passed in the \code{object} argument.
The available methods for prediction are 'ML', 'WeightedML', 'Regression', and 'Kalman'. See the help page for \code{\link{mxFactorScores}} for details on the first three of these. The 'Kalman' method uses the Kalman filter to create predictions for state space models.
}
|