File: rp-regression

package info (click to toggle)
r-cran-openmx 2.21.1%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 14,412 kB
  • sloc: cpp: 36,577; ansic: 13,811; fortran: 2,001; sh: 1,440; python: 350; perl: 21; makefile: 5
file content (241 lines) | stat: -rwxr-xr-x 8,673 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
#!/bin/sh

set -o errexit
set -o nounset
set -o noclobber

out=/tmp/irt-regression.$$.log

opt="-q --vanilla --no-save"

tests="
 inst/models/passing/xxm-1.R
 inst/models/passing/xxm-2.R
 inst/models/passing/xxm-3.R
 inst/models/passing/xxm-4.R
 inst/models/passing/lmer-1.R
 inst/models/passing/lmer-2.R
 inst/models/passing/Rampart1.R
 inst/models/passing/Autoregressive_Tree_Matrix.R
 inst/models/passing/Autoregressive_Tree_Path.R
 inst/models/passing/multilevelLatentRegression.R
 inst/models/passing/MultilevelUniRandomSlopeInt.R
 tests/testthat/test-gendata-multilevel.R
 inst/models/nightly/univACErSEM.R
 inst/models/nightly/mplus-ex9.1.R
 inst/models/nightly/mplus-ex9.6.R
 inst/models/nightly/mplus-ex9.11.R
 inst/models/nightly/mplus-ex9.12.R
 inst/models/nightly/xxm-cfars.R
 inst/models/nightly/xxm-hcfa.R
 inst/models/nightly/xxm-lgc.R
 inst/models/nightly/xxm-mlcfa.R
 inst/models/nightly/xxm-faces.R
 inst/models/nightly/mplus-ex9.23.R
 inst/models/nightly/multilevelLatentRegression2.R
"

for t in $tests; do
  echo -n "$t\t"
  if false; then
    R $opt -f $t
  else
    if ! /usr/bin/time --format "%E %F %R %c" bash -c "R $opt -f $t > $out 2>&1"; then
      cat $out
      exit
    else
      rm -f $out
    fi
  fi
done

exit 0

# -----------------------------------
# !! check psensor for overheating !!
# -----------------------------------

passing/xxm-1.R	0:01.88
passing/lmer-1.R	0:02.77
passing/lmer-2.R	0:02.92
passing/Rampart1.R	0:02.16
passing/Autoregressive_Tree_Matrix.R	0:02.00
passing/Autoregressive_Tree_Path.R	0:02.08
passing/multilevelLatentRegression.R	0:02.21
nightly/univACErSEM.R	0:02.78
nightly/multilevelLatentRegression2.R	0:16.80
nightly/mplus-ex9.6.R	0:40.32

29 Feb 2016:

passing/xxm-1.R	0:01.94
passing/lmer-1.R	0:02.94
passing/lmer-2.R	0:03.54
passing/Rampart1.R	0:02.46
passing/Autoregressive_Tree_Matrix.R	0:02.00
passing/Autoregressive_Tree_Path.R	0:02.19
passing/multilevelLatentRegression.R	0:02.24
nightly/univACErSEM.R	0:03.18
nightly/multilevelLatentRegression2.R	0:19.39
nightly/mplus-ex9.6.R	0:27.54

14 Mar 2016:

passing/xxm-1.R	0:01.87
passing/lmer-1.R	0:02.69
passing/lmer-2.R	0:03.19
passing/Rampart1.R	0:02.46
passing/Autoregressive_Tree_Matrix.R	0:01.93
passing/Autoregressive_Tree_Path.R	0:02.04
passing/multilevelLatentRegression.R	0:02.09
passing/MultilevelUniRandomSlopeInt.R	0:09.50
nightly/univACErSEM.R	0:02.85
nightly/multilevelLatentRegression2.R	0:16.71
nightly/mplus-ex9.6.R	0:09.97

19 Apr 2016:

passing/xxm-1.R	0:01.89
passing/lmer-1.R	0:02.69
passing/lmer-2.R	0:02.78
passing/Rampart1.R	0:02.29
passing/Autoregressive_Tree_Matrix.R	0:01.82
passing/Autoregressive_Tree_Path.R	0:01.87
passing/multilevelLatentRegression.R	0:02.02
passing/MultilevelUniRandomSlopeInt.R	0:06.51
nightly/univACErSEM.R	0:02.46
nightly/multilevelLatentRegression2.R	0:09.06
nightly/mplus-ex9.6.R	0:04.63

23 Dec 2016:

passing/xxm-1.R	0:01.71 0 53089 99
passing/xxm-2.R	0:01.99 0 53750 25
passing/xxm-3.R	0:02.09 0 53770 17
passing/xxm-4.R	0:02.28 0 55210 54
passing/lmer-1.R	0:02.32 0 53888 341
passing/lmer-2.R	0:02.61 0 55027 453
passing/Rampart1.R	0:02.14 0 69622 276
passing/Autoregressive_Tree_Matrix.R	0:01.68 0 53298 38
passing/Autoregressive_Tree_Path.R	0:01.74 0 53500 53
passing/multilevelLatentRegression.R	0:01.83 0 53100 25
passing/MultilevelUniRandomSlopeInt.R	0:05.71 0 61312 483
nightly/univACErSEM.R	0:02.36 0 53218 325
nightly/multilevelLatentRegression2.R	0:15.54 0 138388 7375
nightly/mplus-ex9.1.R	0:02.01 0 53578 301
nightly/mplus-ex9.6.R	0:05.17 0 53957 2170
nightly/mplus-ex9.11.R	0:17.67 0 53514 12350
nightly/mplus-ex9.12.R	0:03.71 0 54115 1055
nightly/mplus-ex9.23.R	1:44.95 0 69156 73255
nightly/xxm-cfars.R	0:03.10 0 54381 2232
nightly/xxm-faces.R	3:07.47 0 195999 155208
nightly/xxm-hcfa.R	0:02.91 0 53151 1417
nightly/xxm-lgc.R	0:02.08 0 53255 152
nightly/xxm-mlcfa.R	0:04.21 0 53388 2634

17 Jan 2017:

passing/xxm-1.R	0:01.65 0 53164 26
passing/xxm-2.R	0:01.93 0 53811 20
passing/xxm-3.R	0:01.98 0 53835 24
passing/xxm-4.R	0:02.33 0 54981 34
passing/lmer-1.R	0:02.37 0 53993 72
passing/lmer-2.R	0:02.57 0 54810 83
passing/Rampart1.R	0:02.10 0 69575 67
passing/Autoregressive_Tree_Matrix.R	0:01.63 0 53306 23
passing/Autoregressive_Tree_Path.R	0:01.69 0 53498 33
passing/multilevelLatentRegression.R	0:01.81 0 53181 20
passing/MultilevelUniRandomSlopeInt.R	0:05.29 0 57457 203
nightly/univACErSEM.R	0:02.33 0 53286 34
nightly/multilevelLatentRegression2.R	5:44.97 0 225734 114450
nightly/mplus-ex9.1.R	0:02.14 0 53612 71
nightly/mplus-ex9.6.R	0:06.09 0 53938 1536
nightly/mplus-ex9.11.R	0:23.50 0 53613 8825
nightly/mplus-ex9.12.R	0:04.20 0 54104 708
nightly/mplus-ex9.23.R	1:58.69 0 67263 43122
nightly/xxm-cfars.R	0:03.28 0 53994 595
nightly/xxm-faces.R	3:20.77 0 102663 61266
nightly/xxm-hcfa.R	0:02.67 0 53234 374
nightly/xxm-lgc.R	0:01.98 0 53322 42
nightly/xxm-mlcfa.R	0:03.61 0 53444 734

08 Oct 2018:

passing/xxm-1.R	0:04.29 0 80480 93
passing/xxm-2.R	0:03.14 0 83820 21
passing/xxm-3.R	0:03.09 0 84833 17
passing/xxm-4.R	0:03.64 0 85079 63
passing/lmer-1.R	0:03.94 0 84850 36
passing/lmer-2.R	0:04.24 0 87484 78
passing/Rampart1.R	0:03.74 0 95992 127
passing/Autoregressive_Tree_Matrix.R	0:02.49 0 64393 23
passing/Autoregressive_Tree_Path.R	0:02.64 0 64644 45
passing/multilevelLatentRegression.R	0:03.80 0 79878 39
passing/MultilevelUniRandomSlopeInt.R	0:07.41 0 89378 259
passing/Multilevel-GenData.R	0:04.75 0 80517 330
nightly/univACErSEM.R	0:03.89 0 82490 32
nightly/multilevelLatentRegression2.R	2:49.68 0 255047 94913
nightly/mplus-ex9.1.R	0:03.29 0 62924 73
nightly/mplus-ex9.6.R	0:06.38 0 80932 2399
nightly/mplus-ex9.11.R	0:04.82 0 81340 417
nightly/mplus-ex9.12.R	0:04.54 0 63443 896
nightly/mplus-ex9.23.R	3:07.69 0 95947 92962
nightly/xxm-cfars.R	0:04.02 0 63552 400
nightly/xxm-faces.R	3:01.82 0 113517 103467
nightly/xxm-hcfa.R	0:03.07 0 62592 49
nightly/xxm-lgc.R	0:03.85 0 73264 177
nightly/xxm-mlcfa.R	0:04.07 0 81109 88

v2.14.11-36-gaeb19eec7 (30 Oct 2019):

inst/models/passing/xxm-1.R	0:03.35 0 51501 20
inst/models/passing/xxm-2.R	0:02.80 0 70349 25
inst/models/passing/xxm-3.R	0:03.33 0 71438 18
inst/models/passing/xxm-4.R	0:03.49 0 71839 127
inst/models/passing/lmer-1.R	0:03.36 0 70485 292
inst/models/passing/lmer-2.R	0:03.68 0 71725 81
inst/models/passing/Rampart1.R	0:03.18 0 52393 130
inst/models/passing/Autoregressive_Tree_Matrix.R	0:02.38 0 54712 15
inst/models/passing/Autoregressive_Tree_Path.R	0:02.60 0 54261 93
inst/models/passing/multilevelLatentRegression.R	0:04.03 0 51521 215
inst/models/passing/MultilevelUniRandomSlopeInt.R	0:07.49 0 76525 199
tests/testthat/test-gendata-multilevel.R	0:03.24 0 51516 44
inst/models/nightly/univACErSEM.R	0:03.18 0 52084 27
inst/models/nightly/multilevelLatentRegression2.R	6:43.28 0 632283 74204
inst/models/nightly/mplus-ex9.1.R	0:02.70 0 51908 17
inst/models/nightly/mplus-ex9.6.R	0:05.37 0 52233 325
inst/models/nightly/mplus-ex9.11.R	0:04.30 0 70233 124
inst/models/nightly/mplus-ex9.12.R	0:03.90 0 52418 287
inst/models/nightly/mplus-ex9.23.R	2:59.58 0 97625 19158
inst/models/nightly/xxm-cfars.R	0:03.43 0 52509 388
inst/models/nightly/xxm-faces.R	2:56.96 0 8166393 15910
inst/models/nightly/xxm-hcfa.R	0:02.61 0 51567 13
inst/models/nightly/xxm-lgc.R	0:02.97 0 51733 31
inst/models/nightly/xxm-mlcfa.R	0:03.46 0 51797 71

v2.14.11-58-g2fa710390 (06 Nov 2019):

inst/models/passing/xxm-1.R	0:03.56 0 51497 12
inst/models/passing/xxm-2.R	0:02.78 0 70214 24
inst/models/passing/xxm-3.R	0:03.05 0 71441 19
inst/models/passing/xxm-4.R	0:03.23 0 71554 35
inst/models/passing/lmer-1.R	0:03.25 0 70483 37
inst/models/passing/lmer-2.R	0:03.52 0 71690 55
inst/models/passing/Rampart1.R	0:02.99 0 52265 40
inst/models/passing/Autoregressive_Tree_Matrix.R	0:02.12 0 54734 34
inst/models/passing/Autoregressive_Tree_Path.R	0:02.25 0 54205 14
inst/models/passing/multilevelLatentRegression.R	0:03.08 0 51546 25
inst/models/passing/MultilevelUniRandomSlopeInt.R	0:06.06 0 73656 99
tests/testthat/test-gendata-multilevel.R	0:03.22 0 51524 41
inst/models/nightly/univACErSEM.R	0:03.17 0 51781 23
inst/models/nightly/mplus-ex9.1.R	0:02.60 0 52015 19
inst/models/nightly/mplus-ex9.6.R	0:03.97 0 52477 369
inst/models/nightly/mplus-ex9.11.R	0:04.21 0 66253 108
inst/models/nightly/mplus-ex9.12.R	0:03.09 0 52817 223
inst/models/nightly/xxm-cfars.R	0:03.75 0 54591 459
inst/models/nightly/xxm-hcfa.R	0:02.47 0 51598 32
inst/models/nightly/xxm-lgc.R	0:02.94 0 51731 31
inst/models/nightly/xxm-mlcfa.R	0:03.23 0 51781 48
inst/models/nightly/xxm-faces.R	3:06.97 0 5606833 74981
inst/models/nightly/mplus-ex9.23.R	2:25.05 0 79302 35910
inst/models/nightly/multilevelLatentRegression2.R	6:10.13 0 336006 165208