File: reg_mimic.html

package info (click to toggle)
r-cran-openmx 2.21.13%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 13,716 kB
  • sloc: cpp: 36,559; ansic: 13,821; fortran: 2,001; sh: 1,440; python: 350; perl: 21; makefile: 11
file content (514 lines) | stat: -rw-r--r-- 40,601 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
<!DOCTYPE html>

<html>

<head>

<meta charset="utf-8" />
<meta name="generator" content="pandoc" />
<meta http-equiv="X-UA-Compatible" content="IE=EDGE" />

<meta name="viewport" content="width=device-width, initial-scale=1" />

<meta name="author" content="Joshua Pritikin and Ross Jacobucci and Timothy R. Brick" />

<meta name="date" content="2024-10-18" />

<title>Regularized MIMIC</title>

<script>// Pandoc 2.9 adds attributes on both header and div. We remove the former (to
// be compatible with the behavior of Pandoc < 2.8).
document.addEventListener('DOMContentLoaded', function(e) {
  var hs = document.querySelectorAll("div.section[class*='level'] > :first-child");
  var i, h, a;
  for (i = 0; i < hs.length; i++) {
    h = hs[i];
    if (!/^h[1-6]$/i.test(h.tagName)) continue;  // it should be a header h1-h6
    a = h.attributes;
    while (a.length > 0) h.removeAttribute(a[0].name);
  }
});
</script>

<style type="text/css">
  code{white-space: pre-wrap;}
  span.smallcaps{font-variant: small-caps;}
  span.underline{text-decoration: underline;}
  div.column{display: inline-block; vertical-align: top; width: 50%;}
  div.hanging-indent{margin-left: 1.5em; text-indent: -1.5em;}
  ul.task-list{list-style: none;}
    </style>



<style type="text/css">
  code {
    white-space: pre;
  }
  .sourceCode {
    overflow: visible;
  }
</style>
<style type="text/css" data-origin="pandoc">
pre > code.sourceCode { white-space: pre; position: relative; }
pre > code.sourceCode > span { display: inline-block; line-height: 1.25; }
pre > code.sourceCode > span:empty { height: 1.2em; }
.sourceCode { overflow: visible; }
code.sourceCode > span { color: inherit; text-decoration: inherit; }
div.sourceCode { margin: 1em 0; }
pre.sourceCode { margin: 0; }
@media screen {
div.sourceCode { overflow: auto; }
}
@media print {
pre > code.sourceCode { white-space: pre-wrap; }
pre > code.sourceCode > span { text-indent: -5em; padding-left: 5em; }
}
pre.numberSource code
  { counter-reset: source-line 0; }
pre.numberSource code > span
  { position: relative; left: -4em; counter-increment: source-line; }
pre.numberSource code > span > a:first-child::before
  { content: counter(source-line);
    position: relative; left: -1em; text-align: right; vertical-align: baseline;
    border: none; display: inline-block;
    -webkit-touch-callout: none; -webkit-user-select: none;
    -khtml-user-select: none; -moz-user-select: none;
    -ms-user-select: none; user-select: none;
    padding: 0 4px; width: 4em;
    color: #aaaaaa;
  }
pre.numberSource { margin-left: 3em; border-left: 1px solid #aaaaaa;  padding-left: 4px; }
div.sourceCode
  {   }
@media screen {
pre > code.sourceCode > span > a:first-child::before { text-decoration: underline; }
}
code span.al { color: #ff0000; font-weight: bold; } /* Alert */
code span.an { color: #60a0b0; font-weight: bold; font-style: italic; } /* Annotation */
code span.at { color: #7d9029; } /* Attribute */
code span.bn { color: #40a070; } /* BaseN */
code span.bu { color: #008000; } /* BuiltIn */
code span.cf { color: #007020; font-weight: bold; } /* ControlFlow */
code span.ch { color: #4070a0; } /* Char */
code span.cn { color: #880000; } /* Constant */
code span.co { color: #60a0b0; font-style: italic; } /* Comment */
code span.cv { color: #60a0b0; font-weight: bold; font-style: italic; } /* CommentVar */
code span.do { color: #ba2121; font-style: italic; } /* Documentation */
code span.dt { color: #902000; } /* DataType */
code span.dv { color: #40a070; } /* DecVal */
code span.er { color: #ff0000; font-weight: bold; } /* Error */
code span.ex { } /* Extension */
code span.fl { color: #40a070; } /* Float */
code span.fu { color: #06287e; } /* Function */
code span.im { color: #008000; font-weight: bold; } /* Import */
code span.in { color: #60a0b0; font-weight: bold; font-style: italic; } /* Information */
code span.kw { color: #007020; font-weight: bold; } /* Keyword */
code span.op { color: #666666; } /* Operator */
code span.ot { color: #007020; } /* Other */
code span.pp { color: #bc7a00; } /* Preprocessor */
code span.sc { color: #4070a0; } /* SpecialChar */
code span.ss { color: #bb6688; } /* SpecialString */
code span.st { color: #4070a0; } /* String */
code span.va { color: #19177c; } /* Variable */
code span.vs { color: #4070a0; } /* VerbatimString */
code span.wa { color: #60a0b0; font-weight: bold; font-style: italic; } /* Warning */

</style>
<script>
// apply pandoc div.sourceCode style to pre.sourceCode instead
(function() {
  var sheets = document.styleSheets;
  for (var i = 0; i < sheets.length; i++) {
    if (sheets[i].ownerNode.dataset["origin"] !== "pandoc") continue;
    try { var rules = sheets[i].cssRules; } catch (e) { continue; }
    var j = 0;
    while (j < rules.length) {
      var rule = rules[j];
      // check if there is a div.sourceCode rule
      if (rule.type !== rule.STYLE_RULE || rule.selectorText !== "div.sourceCode") {
        j++;
        continue;
      }
      var style = rule.style.cssText;
      // check if color or background-color is set
      if (rule.style.color === '' && rule.style.backgroundColor === '') {
        j++;
        continue;
      }
      // replace div.sourceCode by a pre.sourceCode rule
      sheets[i].deleteRule(j);
      sheets[i].insertRule('pre.sourceCode{' + style + '}', j);
    }
  }
})();
</script>




<style type="text/css">body {
background-color: #fff;
margin: 1em auto;
max-width: 700px;
overflow: visible;
padding-left: 2em;
padding-right: 2em;
font-family: "Open Sans", "Helvetica Neue", Helvetica, Arial, sans-serif;
font-size: 14px;
line-height: 1.35;
}
#TOC {
clear: both;
margin: 0 0 10px 10px;
padding: 4px;
width: 400px;
border: 1px solid #CCCCCC;
border-radius: 5px;
background-color: #f6f6f6;
font-size: 13px;
line-height: 1.3;
}
#TOC .toctitle {
font-weight: bold;
font-size: 15px;
margin-left: 5px;
}
#TOC ul {
padding-left: 40px;
margin-left: -1.5em;
margin-top: 5px;
margin-bottom: 5px;
}
#TOC ul ul {
margin-left: -2em;
}
#TOC li {
line-height: 16px;
}
table {
margin: 1em auto;
border-width: 1px;
border-color: #DDDDDD;
border-style: outset;
border-collapse: collapse;
}
table th {
border-width: 2px;
padding: 5px;
border-style: inset;
}
table td {
border-width: 1px;
border-style: inset;
line-height: 18px;
padding: 5px 5px;
}
table, table th, table td {
border-left-style: none;
border-right-style: none;
}
table thead, table tr.even {
background-color: #f7f7f7;
}
p {
margin: 0.5em 0;
}
blockquote {
background-color: #f6f6f6;
padding: 0.25em 0.75em;
}
hr {
border-style: solid;
border: none;
border-top: 1px solid #777;
margin: 28px 0;
}
dl {
margin-left: 0;
}
dl dd {
margin-bottom: 13px;
margin-left: 13px;
}
dl dt {
font-weight: bold;
}
ul {
margin-top: 0;
}
ul li {
list-style: circle outside;
}
ul ul {
margin-bottom: 0;
}
pre, code {
background-color: #f7f7f7;
border-radius: 3px;
color: #333;
white-space: pre-wrap; 
}
pre {
border-radius: 3px;
margin: 5px 0px 10px 0px;
padding: 10px;
}
pre:not([class]) {
background-color: #f7f7f7;
}
code {
font-family: Consolas, Monaco, 'Courier New', monospace;
font-size: 85%;
}
p > code, li > code {
padding: 2px 0px;
}
div.figure {
text-align: center;
}
img {
background-color: #FFFFFF;
padding: 2px;
border: 1px solid #DDDDDD;
border-radius: 3px;
border: 1px solid #CCCCCC;
margin: 0 5px;
}
h1 {
margin-top: 0;
font-size: 35px;
line-height: 40px;
}
h2 {
border-bottom: 4px solid #f7f7f7;
padding-top: 10px;
padding-bottom: 2px;
font-size: 145%;
}
h3 {
border-bottom: 2px solid #f7f7f7;
padding-top: 10px;
font-size: 120%;
}
h4 {
border-bottom: 1px solid #f7f7f7;
margin-left: 8px;
font-size: 105%;
}
h5, h6 {
border-bottom: 1px solid #ccc;
font-size: 105%;
}
a {
color: #0033dd;
text-decoration: none;
}
a:hover {
color: #6666ff; }
a:visited {
color: #800080; }
a:visited:hover {
color: #BB00BB; }
a[href^="http:"] {
text-decoration: underline; }
a[href^="https:"] {
text-decoration: underline; }

code > span.kw { color: #555; font-weight: bold; } 
code > span.dt { color: #902000; } 
code > span.dv { color: #40a070; } 
code > span.bn { color: #d14; } 
code > span.fl { color: #d14; } 
code > span.ch { color: #d14; } 
code > span.st { color: #d14; } 
code > span.co { color: #888888; font-style: italic; } 
code > span.ot { color: #007020; } 
code > span.al { color: #ff0000; font-weight: bold; } 
code > span.fu { color: #900; font-weight: bold; } 
code > span.er { color: #a61717; background-color: #e3d2d2; } 
</style>




</head>

<body>




<h1 class="title toc-ignore">Regularized MIMIC</h1>
<h4 class="author">Joshua Pritikin and Ross Jacobucci and Timothy R.
Brick</h4>
<h4 class="date">2024-10-18</h4>



<div id="regularized-mimic-model" class="section level1">
<h1>Regularized MIMIC model</h1>
<p>This example uses the immortal Holzinger Swineford data set.</p>
<div class="sourceCode" id="cb1"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb1-1"><a href="#cb1-1" aria-hidden="true" tabindex="-1"></a><span class="fu">library</span>(OpenMx)</span>
<span id="cb1-2"><a href="#cb1-2" aria-hidden="true" tabindex="-1"></a><span class="fu">data</span>(HS.ability.data)</span></code></pre></div>
<p>The OpenMx model looks like this:</p>
<div class="sourceCode" id="cb2"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb2-1"><a href="#cb2-1" aria-hidden="true" tabindex="-1"></a>HS.ability.data<span class="sc">$</span>ageym <span class="ot">&lt;-</span> HS.ability.data<span class="sc">$</span>agey<span class="sc">*</span><span class="dv">12</span> <span class="sc">+</span> HS.ability.data<span class="sc">$</span>agem</span>
<span id="cb2-2"><a href="#cb2-2" aria-hidden="true" tabindex="-1"></a>HS.ability.data<span class="sc">$</span>male <span class="ot">&lt;-</span> <span class="fu">as.numeric</span>(HS.ability.data<span class="sc">$</span>Gender <span class="sc">==</span> <span class="st">&#39;Male&#39;</span>)</span>
<span id="cb2-3"><a href="#cb2-3" aria-hidden="true" tabindex="-1"></a></span>
<span id="cb2-4"><a href="#cb2-4" aria-hidden="true" tabindex="-1"></a><span class="co"># Specify variables</span></span>
<span id="cb2-5"><a href="#cb2-5" aria-hidden="true" tabindex="-1"></a>indicators <span class="ot">&lt;-</span> <span class="fu">c</span>(<span class="st">&#39;visual&#39;</span>,<span class="st">&#39;cubes&#39;</span>,<span class="st">&#39;paper&#39;</span>,<span class="st">&#39;flags&#39;</span>,<span class="st">&#39;paperrev&#39;</span>,<span class="st">&#39;flagssub&#39;</span>,</span>
<span id="cb2-6"><a href="#cb2-6" aria-hidden="true" tabindex="-1"></a>                <span class="st">&#39;general&#39;</span>,<span class="st">&#39;paragrap&#39;</span>,<span class="st">&#39;sentence&#39;</span>,<span class="st">&#39;wordc&#39;</span>,<span class="st">&#39;wordm&#39;</span>)</span>
<span id="cb2-7"><a href="#cb2-7" aria-hidden="true" tabindex="-1"></a>covariates <span class="ot">&lt;-</span> <span class="fu">c</span>(<span class="st">&quot;male&quot;</span>,<span class="st">&quot;ageym&quot;</span>,<span class="st">&quot;grade&quot;</span>)</span>
<span id="cb2-8"><a href="#cb2-8" aria-hidden="true" tabindex="-1"></a>latents <span class="ot">=</span> <span class="fu">c</span>(<span class="st">&quot;g&quot;</span>, covariates)</span>
<span id="cb2-9"><a href="#cb2-9" aria-hidden="true" tabindex="-1"></a></span>
<span id="cb2-10"><a href="#cb2-10" aria-hidden="true" tabindex="-1"></a><span class="co"># Build the model</span></span>
<span id="cb2-11"><a href="#cb2-11" aria-hidden="true" tabindex="-1"></a>mimicModel <span class="ot">&lt;-</span> <span class="fu">mxModel</span>(</span>
<span id="cb2-12"><a href="#cb2-12" aria-hidden="true" tabindex="-1"></a>  <span class="st">&quot;MIMIC&quot;</span>, <span class="at">type=</span><span class="st">&quot;RAM&quot;</span>,</span>
<span id="cb2-13"><a href="#cb2-13" aria-hidden="true" tabindex="-1"></a>  <span class="at">manifestVars =</span> indicators, <span class="at">latentVars =</span> latents,</span>
<span id="cb2-14"><a href="#cb2-14" aria-hidden="true" tabindex="-1"></a></span>
<span id="cb2-15"><a href="#cb2-15" aria-hidden="true" tabindex="-1"></a>  <span class="co"># Set up exogenous predictors</span></span>
<span id="cb2-16"><a href="#cb2-16" aria-hidden="true" tabindex="-1"></a>  <span class="fu">mxPath</span>(<span class="st">&quot;one&quot;</span>, covariates, <span class="at">labels=</span><span class="fu">paste0</span>(<span class="st">&#39;data.&#39;</span>,covariates), <span class="at">free=</span><span class="cn">FALSE</span>),</span>
<span id="cb2-17"><a href="#cb2-17" aria-hidden="true" tabindex="-1"></a></span>
<span id="cb2-18"><a href="#cb2-18" aria-hidden="true" tabindex="-1"></a>  <span class="co"># Fix factor variance</span></span>
<span id="cb2-19"><a href="#cb2-19" aria-hidden="true" tabindex="-1"></a>  <span class="fu">mxPath</span>(<span class="st">&#39;g&#39;</span>, <span class="at">arrows=</span><span class="dv">2</span>, <span class="at">free=</span><span class="cn">FALSE</span>, <span class="at">values=</span><span class="dv">1</span>),</span>
<span id="cb2-20"><a href="#cb2-20" aria-hidden="true" tabindex="-1"></a></span>
<span id="cb2-21"><a href="#cb2-21" aria-hidden="true" tabindex="-1"></a>  <span class="co"># Error variances:</span></span>
<span id="cb2-22"><a href="#cb2-22" aria-hidden="true" tabindex="-1"></a>  <span class="fu">mxPath</span>(<span class="at">from=</span><span class="fu">c</span>(indicators), <span class="at">arrows=</span><span class="dv">2</span>, <span class="at">free=</span><span class="cn">TRUE</span>, <span class="at">values=</span><span class="dv">10</span>),</span>
<span id="cb2-23"><a href="#cb2-23" aria-hidden="true" tabindex="-1"></a></span>
<span id="cb2-24"><a href="#cb2-24" aria-hidden="true" tabindex="-1"></a>  <span class="co"># Means (saturated means model):</span></span>
<span id="cb2-25"><a href="#cb2-25" aria-hidden="true" tabindex="-1"></a>  <span class="fu">mxPath</span>(<span class="at">from=</span><span class="st">&quot;one&quot;</span>, <span class="at">to=</span>indicators, <span class="at">values=</span><span class="fu">rep</span>(<span class="dv">5</span>, <span class="fu">length</span>(indicators))),</span>
<span id="cb2-26"><a href="#cb2-26" aria-hidden="true" tabindex="-1"></a></span>
<span id="cb2-27"><a href="#cb2-27" aria-hidden="true" tabindex="-1"></a>  <span class="co"># Loadings:</span></span>
<span id="cb2-28"><a href="#cb2-28" aria-hidden="true" tabindex="-1"></a>  <span class="fu">mxPath</span>(<span class="at">from=</span><span class="st">&quot;g&quot;</span>, <span class="at">to=</span>indicators, <span class="at">values=</span>.<span class="dv">5</span>),</span>
<span id="cb2-29"><a href="#cb2-29" aria-hidden="true" tabindex="-1"></a></span>
<span id="cb2-30"><a href="#cb2-30" aria-hidden="true" tabindex="-1"></a>  <span class="co"># Covariate paths</span></span>
<span id="cb2-31"><a href="#cb2-31" aria-hidden="true" tabindex="-1"></a>  <span class="fu">mxPath</span>(covariates, <span class="st">&quot;g&quot;</span>, <span class="at">labels=</span>covariates),</span>
<span id="cb2-32"><a href="#cb2-32" aria-hidden="true" tabindex="-1"></a></span>
<span id="cb2-33"><a href="#cb2-33" aria-hidden="true" tabindex="-1"></a>  <span class="co"># Data</span></span>
<span id="cb2-34"><a href="#cb2-34" aria-hidden="true" tabindex="-1"></a>  <span class="fu">mxData</span>(<span class="at">observed =</span> HS.ability.data, <span class="at">type =</span> <span class="st">&quot;raw&quot;</span>))</span>
<span id="cb2-35"><a href="#cb2-35" aria-hidden="true" tabindex="-1"></a></span>
<span id="cb2-36"><a href="#cb2-36" aria-hidden="true" tabindex="-1"></a><span class="co"># Get some good starting values for regularization. This</span></span>
<span id="cb2-37"><a href="#cb2-37" aria-hidden="true" tabindex="-1"></a><span class="co"># saves 2-3 minutes on my laptop.</span></span>
<span id="cb2-38"><a href="#cb2-38" aria-hidden="true" tabindex="-1"></a>mimicModel <span class="ot">&lt;-</span> <span class="fu">mxRun</span>(mimicModel)</span></code></pre></div>
<pre><code>## Running MIMIC with 36 parameters</code></pre>
<p>Add the penalty:</p>
<div class="sourceCode" id="cb4"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb4-1"><a href="#cb4-1" aria-hidden="true" tabindex="-1"></a>mimicModel <span class="ot">&lt;-</span> <span class="fu">mxModel</span>(</span>
<span id="cb4-2"><a href="#cb4-2" aria-hidden="true" tabindex="-1"></a>  mimicModel,</span>
<span id="cb4-3"><a href="#cb4-3" aria-hidden="true" tabindex="-1"></a>  <span class="fu">mxMatrix</span>(<span class="st">&#39;Full&#39;</span>,<span class="dv">1</span>,<span class="dv">1</span>,<span class="at">free=</span><span class="cn">TRUE</span>,<span class="at">values=</span><span class="dv">0</span>,<span class="at">labels=</span><span class="st">&quot;lambda&quot;</span>,<span class="at">name=</span><span class="st">&quot;hparam&quot;</span>),</span>
<span id="cb4-4"><a href="#cb4-4" aria-hidden="true" tabindex="-1"></a>  <span class="co"># Set scale to ML estimates for adaptive lasso</span></span>
<span id="cb4-5"><a href="#cb4-5" aria-hidden="true" tabindex="-1"></a>  <span class="fu">mxPenaltyLASSO</span>(<span class="at">what=</span>covariates, <span class="at">name=</span><span class="st">&quot;LASSO&quot;</span>,</span>
<span id="cb4-6"><a href="#cb4-6" aria-hidden="true" tabindex="-1"></a>                    <span class="at">scale =</span> <span class="fu">coef</span>(mimicModel)[covariates],</span>
<span id="cb4-7"><a href="#cb4-7" aria-hidden="true" tabindex="-1"></a>                    <span class="at">lambda =</span>  <span class="dv">0</span>, <span class="at">lambda.max =</span><span class="dv">2</span>, <span class="at">lambda.step=</span>.<span class="dv">04</span>)</span>
<span id="cb4-8"><a href="#cb4-8" aria-hidden="true" tabindex="-1"></a>)</span></code></pre></div>
<p>Run the regularization. With only three covariates, the plot of
results is not very exciting. We learn that sex is not a good predictor
of this factor.</p>
<div class="sourceCode" id="cb5"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb5-1"><a href="#cb5-1" aria-hidden="true" tabindex="-1"></a>regMIMIC <span class="ot">&lt;-</span> <span class="fu">mxPenaltySearch</span>(mimicModel)</span></code></pre></div>
<pre><code>## Running MIMIC with 37 parameters</code></pre>
<pre><code>## Warning: In model &#39;MIMIC&#39; Optimizer returned a non-zero status code 6. The
## model does not satisfy the first-order optimality conditions to the required
## accuracy, and no improved point for the merit function could be found during
## the final linesearch (Mx status RED)</code></pre>
<div class="sourceCode" id="cb8"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb8-1"><a href="#cb8-1" aria-hidden="true" tabindex="-1"></a>detail <span class="ot">&lt;-</span> regMIMIC<span class="sc">$</span>compute<span class="sc">$</span>steps<span class="sc">$</span>PS<span class="sc">$</span>output<span class="sc">$</span>detail</span>
<span id="cb8-2"><a href="#cb8-2" aria-hidden="true" tabindex="-1"></a></span>
<span id="cb8-3"><a href="#cb8-3" aria-hidden="true" tabindex="-1"></a><span class="fu">library</span>(reshape2)</span>
<span id="cb8-4"><a href="#cb8-4" aria-hidden="true" tabindex="-1"></a><span class="fu">library</span>(ggplot2)</span>
<span id="cb8-5"><a href="#cb8-5" aria-hidden="true" tabindex="-1"></a></span>
<span id="cb8-6"><a href="#cb8-6" aria-hidden="true" tabindex="-1"></a>est <span class="ot">&lt;-</span> detail[,<span class="fu">c</span>(covariates, <span class="st">&#39;lambda&#39;</span>)]</span>
<span id="cb8-7"><a href="#cb8-7" aria-hidden="true" tabindex="-1"></a><span class="fu">ggplot</span>(<span class="fu">melt</span>(est, <span class="at">id.vars =</span> <span class="st">&#39;lambda&#39;</span>)) <span class="sc">+</span></span>
<span id="cb8-8"><a href="#cb8-8" aria-hidden="true" tabindex="-1"></a>  <span class="fu">geom_line</span>(<span class="fu">aes</span>(<span class="at">x=</span>lambda, <span class="at">y=</span>value, <span class="at">color=</span>variable)) <span class="sc">+</span></span>
<span id="cb8-9"><a href="#cb8-9" aria-hidden="true" tabindex="-1"></a>  <span class="fu">geom_vline</span>(<span class="fu">aes</span>(<span class="at">xintercept=</span><span class="fu">coef</span>(regMIMIC)[<span class="st">&#39;lambda&#39;</span>]),</span>
<span id="cb8-10"><a href="#cb8-10" aria-hidden="true" tabindex="-1"></a>             <span class="at">linetype=</span><span class="st">&quot;dashed&quot;</span>, <span class="at">alpha=</span>.<span class="dv">5</span>)</span></code></pre></div>
<p><img src="" /><!-- --></p>
<p>The regularized factor loadings can be found here,</p>
<div class="sourceCode" id="cb9"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb9-1"><a href="#cb9-1" aria-hidden="true" tabindex="-1"></a>detail[detail<span class="sc">$</span>EBIC <span class="sc">==</span> <span class="fu">min</span>(detail<span class="sc">$</span>EBIC), covariates]</span></code></pre></div>
<pre><code>##           male       ageym   grade
## 36 3.47131e-07 -0.02792844 1.05808</code></pre>
<p>The regularization causes a lot of bias. One way to deal with this is
to fix zerod parameters to zero, discard the regularization penalty, and
re-fit model.</p>
<div class="sourceCode" id="cb11"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb11-1"><a href="#cb11-1" aria-hidden="true" tabindex="-1"></a>regMIMIC <span class="ot">&lt;-</span> <span class="fu">mxPenaltyZap</span>(regMIMIC)</span></code></pre></div>
<pre><code>## Zapping &#39;male&#39;</code></pre>
<pre><code>## Fixing &#39;lambda&#39;</code></pre>
<pre><code>## Tip: Use
##   model = mxRun(model)
## to re-estimate the model without any penalty terms.</code></pre>
<div class="sourceCode" id="cb15"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb15-1"><a href="#cb15-1" aria-hidden="true" tabindex="-1"></a>regMIMIC <span class="ot">&lt;-</span> <span class="fu">mxRun</span>(regMIMIC)</span></code></pre></div>
<pre><code>## Running MIMIC with 35 parameters</code></pre>
<div class="sourceCode" id="cb17"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb17-1"><a href="#cb17-1" aria-hidden="true" tabindex="-1"></a><span class="fu">summary</span>(regMIMIC)</span></code></pre></div>
<pre><code>## Summary of MIMIC 
##  
## free parameters:
##              name matrix      row      col    Estimate    Std.Error A
## 1   MIMIC.A[1,12]      A   visual        g  2.61817105  0.364534563  
## 2   MIMIC.A[2,12]      A    cubes        g  0.93494431  0.256319516  
## 3   MIMIC.A[3,12]      A    paper        g  0.70084534  0.152041063  
## 4   MIMIC.A[4,12]      A    flags        g  1.57350766  0.491472833  
## 5   MIMIC.A[5,12]      A paperrev        g  0.99009878  0.245139237  
## 6   MIMIC.A[6,12]      A flagssub        g  3.33341890  0.640099599  
## 7   MIMIC.A[7,12]      A  general        g  9.23702148  0.536672435  
## 8   MIMIC.A[8,12]      A paragrap        g  2.53491878  0.157363203  
## 9   MIMIC.A[9,12]      A sentence        g  3.96091981  0.222177321  
## 10 MIMIC.A[10,12]      A    wordc        g  3.80400361  0.259672047  
## 11 MIMIC.A[11,12]      A    wordm        g  5.73048049  0.341017122  
## 12          ageym      A        g    ageym -0.02870563  0.006555489  
## 13          grade      A        g    grade  1.08144524  0.254231626  
## 14   MIMIC.S[1,1]      S   visual   visual 40.27126690  3.353608721  
## 15   MIMIC.S[2,2]      S    cubes    cubes 21.00803790  1.722367953  
## 16   MIMIC.S[3,3]      S    paper    paper  7.36559558  0.608809830  
## 17   MIMIC.S[4,4]      S    flags    flags 78.47401958  6.431633936  
## 18   MIMIC.S[5,5]      S paperrev paperrev  8.35237950  0.994140216 !
## 19   MIMIC.S[6,6]      S flagssub flagssub 56.56099127  6.792986323 !
## 20   MIMIC.S[7,7]      S  general  general 45.64524978  4.802395106  
## 21   MIMIC.S[8,8]      S paragrap paragrap  4.06598043  0.402084154  
## 22   MIMIC.S[9,9]      S sentence sentence  6.80451135  0.748411144  
## 23 MIMIC.S[10,10]      S    wordc    wordc 13.88560859  1.287061820  
## 24 MIMIC.S[11,11]      S    wordm    wordm 17.27853485  1.792470269  
## 25   MIMIC.M[1,1]      M        1   visual 21.29330086  6.209523404  
## 26   MIMIC.M[1,2]      M        1    cubes 21.38063178  2.205532617  
## 27   MIMIC.M[1,3]      M        1    paper 12.00174339  1.658232981  
## 28   MIMIC.M[1,4]      M        1    flags 13.00225084  3.769860864  
## 29   MIMIC.M[1,5]      M        1 paperrev 12.12979740  2.407687991  
## 30   MIMIC.M[1,6]      M        1 flagssub 24.45761673  8.142001966  
## 31   MIMIC.M[1,7]      M        1  general 11.26661411 22.007072505  
## 32   MIMIC.M[1,8]      M        1 paragrap  1.12600697  5.976502615  
## 33   MIMIC.M[1,9]      M        1 sentence  4.77315869  9.408036586  
## 34  MIMIC.M[1,10]      M        1    wordc 14.03600332  9.016417574  
## 35  MIMIC.M[1,11]      M        1    wordm -2.91414936 13.552291066  
## 
## Model Statistics: 
##                |  Parameters  |  Degrees of Freedom  |  Fit (-2lnL units)
##        Model:             35                   2964              17843.68
##    Saturated:             77                   2922                    NA
## Independence:             22                   2977                    NA
## Number of observations/statistics: 301/2999
## 
## Information Criteria: 
##       |  df Penalty  |  Parameters Penalty  |  Sample-Size Adjusted
## AIC:     11915.6773               17913.68                 17923.19
## BIC:       927.8025               18043.43                 17932.43
## To get additional fit indices, see help(mxRefModels)
## timestamp: 2024-10-18 13:30:26 
## Wall clock time: 0.6433542 secs 
## optimizer:  SLSQP 
## OpenMx version number: 2.21.13 
## Need help?  See help(mxSummary)</code></pre>
</div>



<!-- code folding -->


<!-- dynamically load mathjax for compatibility with self-contained -->
<script>
  (function () {
    var script = document.createElement("script");
    script.type = "text/javascript";
    script.src  = "https://mathjax.rstudio.com/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML";
    document.getElementsByTagName("head")[0].appendChild(script);
  })();
</script>

</body>
</html>