1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514
|
<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8" />
<meta name="generator" content="pandoc" />
<meta http-equiv="X-UA-Compatible" content="IE=EDGE" />
<meta name="viewport" content="width=device-width, initial-scale=1" />
<meta name="author" content="Joshua Pritikin and Ross Jacobucci and Timothy R. Brick" />
<meta name="date" content="2024-10-18" />
<title>Regularized MIMIC</title>
<script>// Pandoc 2.9 adds attributes on both header and div. We remove the former (to
// be compatible with the behavior of Pandoc < 2.8).
document.addEventListener('DOMContentLoaded', function(e) {
var hs = document.querySelectorAll("div.section[class*='level'] > :first-child");
var i, h, a;
for (i = 0; i < hs.length; i++) {
h = hs[i];
if (!/^h[1-6]$/i.test(h.tagName)) continue; // it should be a header h1-h6
a = h.attributes;
while (a.length > 0) h.removeAttribute(a[0].name);
}
});
</script>
<style type="text/css">
code{white-space: pre-wrap;}
span.smallcaps{font-variant: small-caps;}
span.underline{text-decoration: underline;}
div.column{display: inline-block; vertical-align: top; width: 50%;}
div.hanging-indent{margin-left: 1.5em; text-indent: -1.5em;}
ul.task-list{list-style: none;}
</style>
<style type="text/css">
code {
white-space: pre;
}
.sourceCode {
overflow: visible;
}
</style>
<style type="text/css" data-origin="pandoc">
pre > code.sourceCode { white-space: pre; position: relative; }
pre > code.sourceCode > span { display: inline-block; line-height: 1.25; }
pre > code.sourceCode > span:empty { height: 1.2em; }
.sourceCode { overflow: visible; }
code.sourceCode > span { color: inherit; text-decoration: inherit; }
div.sourceCode { margin: 1em 0; }
pre.sourceCode { margin: 0; }
@media screen {
div.sourceCode { overflow: auto; }
}
@media print {
pre > code.sourceCode { white-space: pre-wrap; }
pre > code.sourceCode > span { text-indent: -5em; padding-left: 5em; }
}
pre.numberSource code
{ counter-reset: source-line 0; }
pre.numberSource code > span
{ position: relative; left: -4em; counter-increment: source-line; }
pre.numberSource code > span > a:first-child::before
{ content: counter(source-line);
position: relative; left: -1em; text-align: right; vertical-align: baseline;
border: none; display: inline-block;
-webkit-touch-callout: none; -webkit-user-select: none;
-khtml-user-select: none; -moz-user-select: none;
-ms-user-select: none; user-select: none;
padding: 0 4px; width: 4em;
color: #aaaaaa;
}
pre.numberSource { margin-left: 3em; border-left: 1px solid #aaaaaa; padding-left: 4px; }
div.sourceCode
{ }
@media screen {
pre > code.sourceCode > span > a:first-child::before { text-decoration: underline; }
}
code span.al { color: #ff0000; font-weight: bold; } /* Alert */
code span.an { color: #60a0b0; font-weight: bold; font-style: italic; } /* Annotation */
code span.at { color: #7d9029; } /* Attribute */
code span.bn { color: #40a070; } /* BaseN */
code span.bu { color: #008000; } /* BuiltIn */
code span.cf { color: #007020; font-weight: bold; } /* ControlFlow */
code span.ch { color: #4070a0; } /* Char */
code span.cn { color: #880000; } /* Constant */
code span.co { color: #60a0b0; font-style: italic; } /* Comment */
code span.cv { color: #60a0b0; font-weight: bold; font-style: italic; } /* CommentVar */
code span.do { color: #ba2121; font-style: italic; } /* Documentation */
code span.dt { color: #902000; } /* DataType */
code span.dv { color: #40a070; } /* DecVal */
code span.er { color: #ff0000; font-weight: bold; } /* Error */
code span.ex { } /* Extension */
code span.fl { color: #40a070; } /* Float */
code span.fu { color: #06287e; } /* Function */
code span.im { color: #008000; font-weight: bold; } /* Import */
code span.in { color: #60a0b0; font-weight: bold; font-style: italic; } /* Information */
code span.kw { color: #007020; font-weight: bold; } /* Keyword */
code span.op { color: #666666; } /* Operator */
code span.ot { color: #007020; } /* Other */
code span.pp { color: #bc7a00; } /* Preprocessor */
code span.sc { color: #4070a0; } /* SpecialChar */
code span.ss { color: #bb6688; } /* SpecialString */
code span.st { color: #4070a0; } /* String */
code span.va { color: #19177c; } /* Variable */
code span.vs { color: #4070a0; } /* VerbatimString */
code span.wa { color: #60a0b0; font-weight: bold; font-style: italic; } /* Warning */
</style>
<script>
// apply pandoc div.sourceCode style to pre.sourceCode instead
(function() {
var sheets = document.styleSheets;
for (var i = 0; i < sheets.length; i++) {
if (sheets[i].ownerNode.dataset["origin"] !== "pandoc") continue;
try { var rules = sheets[i].cssRules; } catch (e) { continue; }
var j = 0;
while (j < rules.length) {
var rule = rules[j];
// check if there is a div.sourceCode rule
if (rule.type !== rule.STYLE_RULE || rule.selectorText !== "div.sourceCode") {
j++;
continue;
}
var style = rule.style.cssText;
// check if color or background-color is set
if (rule.style.color === '' && rule.style.backgroundColor === '') {
j++;
continue;
}
// replace div.sourceCode by a pre.sourceCode rule
sheets[i].deleteRule(j);
sheets[i].insertRule('pre.sourceCode{' + style + '}', j);
}
}
})();
</script>
<style type="text/css">body {
background-color: #fff;
margin: 1em auto;
max-width: 700px;
overflow: visible;
padding-left: 2em;
padding-right: 2em;
font-family: "Open Sans", "Helvetica Neue", Helvetica, Arial, sans-serif;
font-size: 14px;
line-height: 1.35;
}
#TOC {
clear: both;
margin: 0 0 10px 10px;
padding: 4px;
width: 400px;
border: 1px solid #CCCCCC;
border-radius: 5px;
background-color: #f6f6f6;
font-size: 13px;
line-height: 1.3;
}
#TOC .toctitle {
font-weight: bold;
font-size: 15px;
margin-left: 5px;
}
#TOC ul {
padding-left: 40px;
margin-left: -1.5em;
margin-top: 5px;
margin-bottom: 5px;
}
#TOC ul ul {
margin-left: -2em;
}
#TOC li {
line-height: 16px;
}
table {
margin: 1em auto;
border-width: 1px;
border-color: #DDDDDD;
border-style: outset;
border-collapse: collapse;
}
table th {
border-width: 2px;
padding: 5px;
border-style: inset;
}
table td {
border-width: 1px;
border-style: inset;
line-height: 18px;
padding: 5px 5px;
}
table, table th, table td {
border-left-style: none;
border-right-style: none;
}
table thead, table tr.even {
background-color: #f7f7f7;
}
p {
margin: 0.5em 0;
}
blockquote {
background-color: #f6f6f6;
padding: 0.25em 0.75em;
}
hr {
border-style: solid;
border: none;
border-top: 1px solid #777;
margin: 28px 0;
}
dl {
margin-left: 0;
}
dl dd {
margin-bottom: 13px;
margin-left: 13px;
}
dl dt {
font-weight: bold;
}
ul {
margin-top: 0;
}
ul li {
list-style: circle outside;
}
ul ul {
margin-bottom: 0;
}
pre, code {
background-color: #f7f7f7;
border-radius: 3px;
color: #333;
white-space: pre-wrap;
}
pre {
border-radius: 3px;
margin: 5px 0px 10px 0px;
padding: 10px;
}
pre:not([class]) {
background-color: #f7f7f7;
}
code {
font-family: Consolas, Monaco, 'Courier New', monospace;
font-size: 85%;
}
p > code, li > code {
padding: 2px 0px;
}
div.figure {
text-align: center;
}
img {
background-color: #FFFFFF;
padding: 2px;
border: 1px solid #DDDDDD;
border-radius: 3px;
border: 1px solid #CCCCCC;
margin: 0 5px;
}
h1 {
margin-top: 0;
font-size: 35px;
line-height: 40px;
}
h2 {
border-bottom: 4px solid #f7f7f7;
padding-top: 10px;
padding-bottom: 2px;
font-size: 145%;
}
h3 {
border-bottom: 2px solid #f7f7f7;
padding-top: 10px;
font-size: 120%;
}
h4 {
border-bottom: 1px solid #f7f7f7;
margin-left: 8px;
font-size: 105%;
}
h5, h6 {
border-bottom: 1px solid #ccc;
font-size: 105%;
}
a {
color: #0033dd;
text-decoration: none;
}
a:hover {
color: #6666ff; }
a:visited {
color: #800080; }
a:visited:hover {
color: #BB00BB; }
a[href^="http:"] {
text-decoration: underline; }
a[href^="https:"] {
text-decoration: underline; }
code > span.kw { color: #555; font-weight: bold; }
code > span.dt { color: #902000; }
code > span.dv { color: #40a070; }
code > span.bn { color: #d14; }
code > span.fl { color: #d14; }
code > span.ch { color: #d14; }
code > span.st { color: #d14; }
code > span.co { color: #888888; font-style: italic; }
code > span.ot { color: #007020; }
code > span.al { color: #ff0000; font-weight: bold; }
code > span.fu { color: #900; font-weight: bold; }
code > span.er { color: #a61717; background-color: #e3d2d2; }
</style>
</head>
<body>
<h1 class="title toc-ignore">Regularized MIMIC</h1>
<h4 class="author">Joshua Pritikin and Ross Jacobucci and Timothy R.
Brick</h4>
<h4 class="date">2024-10-18</h4>
<div id="regularized-mimic-model" class="section level1">
<h1>Regularized MIMIC model</h1>
<p>This example uses the immortal Holzinger Swineford data set.</p>
<div class="sourceCode" id="cb1"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb1-1"><a href="#cb1-1" aria-hidden="true" tabindex="-1"></a><span class="fu">library</span>(OpenMx)</span>
<span id="cb1-2"><a href="#cb1-2" aria-hidden="true" tabindex="-1"></a><span class="fu">data</span>(HS.ability.data)</span></code></pre></div>
<p>The OpenMx model looks like this:</p>
<div class="sourceCode" id="cb2"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb2-1"><a href="#cb2-1" aria-hidden="true" tabindex="-1"></a>HS.ability.data<span class="sc">$</span>ageym <span class="ot"><-</span> HS.ability.data<span class="sc">$</span>agey<span class="sc">*</span><span class="dv">12</span> <span class="sc">+</span> HS.ability.data<span class="sc">$</span>agem</span>
<span id="cb2-2"><a href="#cb2-2" aria-hidden="true" tabindex="-1"></a>HS.ability.data<span class="sc">$</span>male <span class="ot"><-</span> <span class="fu">as.numeric</span>(HS.ability.data<span class="sc">$</span>Gender <span class="sc">==</span> <span class="st">'Male'</span>)</span>
<span id="cb2-3"><a href="#cb2-3" aria-hidden="true" tabindex="-1"></a></span>
<span id="cb2-4"><a href="#cb2-4" aria-hidden="true" tabindex="-1"></a><span class="co"># Specify variables</span></span>
<span id="cb2-5"><a href="#cb2-5" aria-hidden="true" tabindex="-1"></a>indicators <span class="ot"><-</span> <span class="fu">c</span>(<span class="st">'visual'</span>,<span class="st">'cubes'</span>,<span class="st">'paper'</span>,<span class="st">'flags'</span>,<span class="st">'paperrev'</span>,<span class="st">'flagssub'</span>,</span>
<span id="cb2-6"><a href="#cb2-6" aria-hidden="true" tabindex="-1"></a> <span class="st">'general'</span>,<span class="st">'paragrap'</span>,<span class="st">'sentence'</span>,<span class="st">'wordc'</span>,<span class="st">'wordm'</span>)</span>
<span id="cb2-7"><a href="#cb2-7" aria-hidden="true" tabindex="-1"></a>covariates <span class="ot"><-</span> <span class="fu">c</span>(<span class="st">"male"</span>,<span class="st">"ageym"</span>,<span class="st">"grade"</span>)</span>
<span id="cb2-8"><a href="#cb2-8" aria-hidden="true" tabindex="-1"></a>latents <span class="ot">=</span> <span class="fu">c</span>(<span class="st">"g"</span>, covariates)</span>
<span id="cb2-9"><a href="#cb2-9" aria-hidden="true" tabindex="-1"></a></span>
<span id="cb2-10"><a href="#cb2-10" aria-hidden="true" tabindex="-1"></a><span class="co"># Build the model</span></span>
<span id="cb2-11"><a href="#cb2-11" aria-hidden="true" tabindex="-1"></a>mimicModel <span class="ot"><-</span> <span class="fu">mxModel</span>(</span>
<span id="cb2-12"><a href="#cb2-12" aria-hidden="true" tabindex="-1"></a> <span class="st">"MIMIC"</span>, <span class="at">type=</span><span class="st">"RAM"</span>,</span>
<span id="cb2-13"><a href="#cb2-13" aria-hidden="true" tabindex="-1"></a> <span class="at">manifestVars =</span> indicators, <span class="at">latentVars =</span> latents,</span>
<span id="cb2-14"><a href="#cb2-14" aria-hidden="true" tabindex="-1"></a></span>
<span id="cb2-15"><a href="#cb2-15" aria-hidden="true" tabindex="-1"></a> <span class="co"># Set up exogenous predictors</span></span>
<span id="cb2-16"><a href="#cb2-16" aria-hidden="true" tabindex="-1"></a> <span class="fu">mxPath</span>(<span class="st">"one"</span>, covariates, <span class="at">labels=</span><span class="fu">paste0</span>(<span class="st">'data.'</span>,covariates), <span class="at">free=</span><span class="cn">FALSE</span>),</span>
<span id="cb2-17"><a href="#cb2-17" aria-hidden="true" tabindex="-1"></a></span>
<span id="cb2-18"><a href="#cb2-18" aria-hidden="true" tabindex="-1"></a> <span class="co"># Fix factor variance</span></span>
<span id="cb2-19"><a href="#cb2-19" aria-hidden="true" tabindex="-1"></a> <span class="fu">mxPath</span>(<span class="st">'g'</span>, <span class="at">arrows=</span><span class="dv">2</span>, <span class="at">free=</span><span class="cn">FALSE</span>, <span class="at">values=</span><span class="dv">1</span>),</span>
<span id="cb2-20"><a href="#cb2-20" aria-hidden="true" tabindex="-1"></a></span>
<span id="cb2-21"><a href="#cb2-21" aria-hidden="true" tabindex="-1"></a> <span class="co"># Error variances:</span></span>
<span id="cb2-22"><a href="#cb2-22" aria-hidden="true" tabindex="-1"></a> <span class="fu">mxPath</span>(<span class="at">from=</span><span class="fu">c</span>(indicators), <span class="at">arrows=</span><span class="dv">2</span>, <span class="at">free=</span><span class="cn">TRUE</span>, <span class="at">values=</span><span class="dv">10</span>),</span>
<span id="cb2-23"><a href="#cb2-23" aria-hidden="true" tabindex="-1"></a></span>
<span id="cb2-24"><a href="#cb2-24" aria-hidden="true" tabindex="-1"></a> <span class="co"># Means (saturated means model):</span></span>
<span id="cb2-25"><a href="#cb2-25" aria-hidden="true" tabindex="-1"></a> <span class="fu">mxPath</span>(<span class="at">from=</span><span class="st">"one"</span>, <span class="at">to=</span>indicators, <span class="at">values=</span><span class="fu">rep</span>(<span class="dv">5</span>, <span class="fu">length</span>(indicators))),</span>
<span id="cb2-26"><a href="#cb2-26" aria-hidden="true" tabindex="-1"></a></span>
<span id="cb2-27"><a href="#cb2-27" aria-hidden="true" tabindex="-1"></a> <span class="co"># Loadings:</span></span>
<span id="cb2-28"><a href="#cb2-28" aria-hidden="true" tabindex="-1"></a> <span class="fu">mxPath</span>(<span class="at">from=</span><span class="st">"g"</span>, <span class="at">to=</span>indicators, <span class="at">values=</span>.<span class="dv">5</span>),</span>
<span id="cb2-29"><a href="#cb2-29" aria-hidden="true" tabindex="-1"></a></span>
<span id="cb2-30"><a href="#cb2-30" aria-hidden="true" tabindex="-1"></a> <span class="co"># Covariate paths</span></span>
<span id="cb2-31"><a href="#cb2-31" aria-hidden="true" tabindex="-1"></a> <span class="fu">mxPath</span>(covariates, <span class="st">"g"</span>, <span class="at">labels=</span>covariates),</span>
<span id="cb2-32"><a href="#cb2-32" aria-hidden="true" tabindex="-1"></a></span>
<span id="cb2-33"><a href="#cb2-33" aria-hidden="true" tabindex="-1"></a> <span class="co"># Data</span></span>
<span id="cb2-34"><a href="#cb2-34" aria-hidden="true" tabindex="-1"></a> <span class="fu">mxData</span>(<span class="at">observed =</span> HS.ability.data, <span class="at">type =</span> <span class="st">"raw"</span>))</span>
<span id="cb2-35"><a href="#cb2-35" aria-hidden="true" tabindex="-1"></a></span>
<span id="cb2-36"><a href="#cb2-36" aria-hidden="true" tabindex="-1"></a><span class="co"># Get some good starting values for regularization. This</span></span>
<span id="cb2-37"><a href="#cb2-37" aria-hidden="true" tabindex="-1"></a><span class="co"># saves 2-3 minutes on my laptop.</span></span>
<span id="cb2-38"><a href="#cb2-38" aria-hidden="true" tabindex="-1"></a>mimicModel <span class="ot"><-</span> <span class="fu">mxRun</span>(mimicModel)</span></code></pre></div>
<pre><code>## Running MIMIC with 36 parameters</code></pre>
<p>Add the penalty:</p>
<div class="sourceCode" id="cb4"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb4-1"><a href="#cb4-1" aria-hidden="true" tabindex="-1"></a>mimicModel <span class="ot"><-</span> <span class="fu">mxModel</span>(</span>
<span id="cb4-2"><a href="#cb4-2" aria-hidden="true" tabindex="-1"></a> mimicModel,</span>
<span id="cb4-3"><a href="#cb4-3" aria-hidden="true" tabindex="-1"></a> <span class="fu">mxMatrix</span>(<span class="st">'Full'</span>,<span class="dv">1</span>,<span class="dv">1</span>,<span class="at">free=</span><span class="cn">TRUE</span>,<span class="at">values=</span><span class="dv">0</span>,<span class="at">labels=</span><span class="st">"lambda"</span>,<span class="at">name=</span><span class="st">"hparam"</span>),</span>
<span id="cb4-4"><a href="#cb4-4" aria-hidden="true" tabindex="-1"></a> <span class="co"># Set scale to ML estimates for adaptive lasso</span></span>
<span id="cb4-5"><a href="#cb4-5" aria-hidden="true" tabindex="-1"></a> <span class="fu">mxPenaltyLASSO</span>(<span class="at">what=</span>covariates, <span class="at">name=</span><span class="st">"LASSO"</span>,</span>
<span id="cb4-6"><a href="#cb4-6" aria-hidden="true" tabindex="-1"></a> <span class="at">scale =</span> <span class="fu">coef</span>(mimicModel)[covariates],</span>
<span id="cb4-7"><a href="#cb4-7" aria-hidden="true" tabindex="-1"></a> <span class="at">lambda =</span> <span class="dv">0</span>, <span class="at">lambda.max =</span><span class="dv">2</span>, <span class="at">lambda.step=</span>.<span class="dv">04</span>)</span>
<span id="cb4-8"><a href="#cb4-8" aria-hidden="true" tabindex="-1"></a>)</span></code></pre></div>
<p>Run the regularization. With only three covariates, the plot of
results is not very exciting. We learn that sex is not a good predictor
of this factor.</p>
<div class="sourceCode" id="cb5"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb5-1"><a href="#cb5-1" aria-hidden="true" tabindex="-1"></a>regMIMIC <span class="ot"><-</span> <span class="fu">mxPenaltySearch</span>(mimicModel)</span></code></pre></div>
<pre><code>## Running MIMIC with 37 parameters</code></pre>
<pre><code>## Warning: In model 'MIMIC' Optimizer returned a non-zero status code 6. The
## model does not satisfy the first-order optimality conditions to the required
## accuracy, and no improved point for the merit function could be found during
## the final linesearch (Mx status RED)</code></pre>
<div class="sourceCode" id="cb8"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb8-1"><a href="#cb8-1" aria-hidden="true" tabindex="-1"></a>detail <span class="ot"><-</span> regMIMIC<span class="sc">$</span>compute<span class="sc">$</span>steps<span class="sc">$</span>PS<span class="sc">$</span>output<span class="sc">$</span>detail</span>
<span id="cb8-2"><a href="#cb8-2" aria-hidden="true" tabindex="-1"></a></span>
<span id="cb8-3"><a href="#cb8-3" aria-hidden="true" tabindex="-1"></a><span class="fu">library</span>(reshape2)</span>
<span id="cb8-4"><a href="#cb8-4" aria-hidden="true" tabindex="-1"></a><span class="fu">library</span>(ggplot2)</span>
<span id="cb8-5"><a href="#cb8-5" aria-hidden="true" tabindex="-1"></a></span>
<span id="cb8-6"><a href="#cb8-6" aria-hidden="true" tabindex="-1"></a>est <span class="ot"><-</span> detail[,<span class="fu">c</span>(covariates, <span class="st">'lambda'</span>)]</span>
<span id="cb8-7"><a href="#cb8-7" aria-hidden="true" tabindex="-1"></a><span class="fu">ggplot</span>(<span class="fu">melt</span>(est, <span class="at">id.vars =</span> <span class="st">'lambda'</span>)) <span class="sc">+</span></span>
<span id="cb8-8"><a href="#cb8-8" aria-hidden="true" tabindex="-1"></a> <span class="fu">geom_line</span>(<span class="fu">aes</span>(<span class="at">x=</span>lambda, <span class="at">y=</span>value, <span class="at">color=</span>variable)) <span class="sc">+</span></span>
<span id="cb8-9"><a href="#cb8-9" aria-hidden="true" tabindex="-1"></a> <span class="fu">geom_vline</span>(<span class="fu">aes</span>(<span class="at">xintercept=</span><span class="fu">coef</span>(regMIMIC)[<span class="st">'lambda'</span>]),</span>
<span id="cb8-10"><a href="#cb8-10" aria-hidden="true" tabindex="-1"></a> <span class="at">linetype=</span><span class="st">"dashed"</span>, <span class="at">alpha=</span>.<span class="dv">5</span>)</span></code></pre></div>
<p><img src="" /><!-- --></p>
<p>The regularized factor loadings can be found here,</p>
<div class="sourceCode" id="cb9"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb9-1"><a href="#cb9-1" aria-hidden="true" tabindex="-1"></a>detail[detail<span class="sc">$</span>EBIC <span class="sc">==</span> <span class="fu">min</span>(detail<span class="sc">$</span>EBIC), covariates]</span></code></pre></div>
<pre><code>## male ageym grade
## 36 3.47131e-07 -0.02792844 1.05808</code></pre>
<p>The regularization causes a lot of bias. One way to deal with this is
to fix zerod parameters to zero, discard the regularization penalty, and
re-fit model.</p>
<div class="sourceCode" id="cb11"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb11-1"><a href="#cb11-1" aria-hidden="true" tabindex="-1"></a>regMIMIC <span class="ot"><-</span> <span class="fu">mxPenaltyZap</span>(regMIMIC)</span></code></pre></div>
<pre><code>## Zapping 'male'</code></pre>
<pre><code>## Fixing 'lambda'</code></pre>
<pre><code>## Tip: Use
## model = mxRun(model)
## to re-estimate the model without any penalty terms.</code></pre>
<div class="sourceCode" id="cb15"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb15-1"><a href="#cb15-1" aria-hidden="true" tabindex="-1"></a>regMIMIC <span class="ot"><-</span> <span class="fu">mxRun</span>(regMIMIC)</span></code></pre></div>
<pre><code>## Running MIMIC with 35 parameters</code></pre>
<div class="sourceCode" id="cb17"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb17-1"><a href="#cb17-1" aria-hidden="true" tabindex="-1"></a><span class="fu">summary</span>(regMIMIC)</span></code></pre></div>
<pre><code>## Summary of MIMIC
##
## free parameters:
## name matrix row col Estimate Std.Error A
## 1 MIMIC.A[1,12] A visual g 2.61817105 0.364534563
## 2 MIMIC.A[2,12] A cubes g 0.93494431 0.256319516
## 3 MIMIC.A[3,12] A paper g 0.70084534 0.152041063
## 4 MIMIC.A[4,12] A flags g 1.57350766 0.491472833
## 5 MIMIC.A[5,12] A paperrev g 0.99009878 0.245139237
## 6 MIMIC.A[6,12] A flagssub g 3.33341890 0.640099599
## 7 MIMIC.A[7,12] A general g 9.23702148 0.536672435
## 8 MIMIC.A[8,12] A paragrap g 2.53491878 0.157363203
## 9 MIMIC.A[9,12] A sentence g 3.96091981 0.222177321
## 10 MIMIC.A[10,12] A wordc g 3.80400361 0.259672047
## 11 MIMIC.A[11,12] A wordm g 5.73048049 0.341017122
## 12 ageym A g ageym -0.02870563 0.006555489
## 13 grade A g grade 1.08144524 0.254231626
## 14 MIMIC.S[1,1] S visual visual 40.27126690 3.353608721
## 15 MIMIC.S[2,2] S cubes cubes 21.00803790 1.722367953
## 16 MIMIC.S[3,3] S paper paper 7.36559558 0.608809830
## 17 MIMIC.S[4,4] S flags flags 78.47401958 6.431633936
## 18 MIMIC.S[5,5] S paperrev paperrev 8.35237950 0.994140216 !
## 19 MIMIC.S[6,6] S flagssub flagssub 56.56099127 6.792986323 !
## 20 MIMIC.S[7,7] S general general 45.64524978 4.802395106
## 21 MIMIC.S[8,8] S paragrap paragrap 4.06598043 0.402084154
## 22 MIMIC.S[9,9] S sentence sentence 6.80451135 0.748411144
## 23 MIMIC.S[10,10] S wordc wordc 13.88560859 1.287061820
## 24 MIMIC.S[11,11] S wordm wordm 17.27853485 1.792470269
## 25 MIMIC.M[1,1] M 1 visual 21.29330086 6.209523404
## 26 MIMIC.M[1,2] M 1 cubes 21.38063178 2.205532617
## 27 MIMIC.M[1,3] M 1 paper 12.00174339 1.658232981
## 28 MIMIC.M[1,4] M 1 flags 13.00225084 3.769860864
## 29 MIMIC.M[1,5] M 1 paperrev 12.12979740 2.407687991
## 30 MIMIC.M[1,6] M 1 flagssub 24.45761673 8.142001966
## 31 MIMIC.M[1,7] M 1 general 11.26661411 22.007072505
## 32 MIMIC.M[1,8] M 1 paragrap 1.12600697 5.976502615
## 33 MIMIC.M[1,9] M 1 sentence 4.77315869 9.408036586
## 34 MIMIC.M[1,10] M 1 wordc 14.03600332 9.016417574
## 35 MIMIC.M[1,11] M 1 wordm -2.91414936 13.552291066
##
## Model Statistics:
## | Parameters | Degrees of Freedom | Fit (-2lnL units)
## Model: 35 2964 17843.68
## Saturated: 77 2922 NA
## Independence: 22 2977 NA
## Number of observations/statistics: 301/2999
##
## Information Criteria:
## | df Penalty | Parameters Penalty | Sample-Size Adjusted
## AIC: 11915.6773 17913.68 17923.19
## BIC: 927.8025 18043.43 17932.43
## To get additional fit indices, see help(mxRefModels)
## timestamp: 2024-10-18 13:30:26
## Wall clock time: 0.6433542 secs
## optimizer: SLSQP
## OpenMx version number: 2.21.13
## Need help? See help(mxSummary)</code></pre>
</div>
<!-- code folding -->
<!-- dynamically load mathjax for compatibility with self-contained -->
<script>
(function () {
var script = document.createElement("script");
script.type = "text/javascript";
script.src = "https://mathjax.rstudio.com/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML";
document.getElementsByTagName("head")[0].appendChild(script);
})();
</script>
</body>
</html>
|