1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158
|
#
# Copyright 2007-2018 by the individuals mentioned in the source code history
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
require(OpenMx)
options(mxCondenseMatrixSlots=TRUE)
require(mvtnorm)
#Generate data:
set.seed(476)
A1 <- matrix(0,100,100)
A1[lower.tri(A1)] <- runif(4950, -0.025, 0.025)
A1 <- A1 + t(A1)
diag(A1) <- runif(100,0.95,1.05)
A2 <- matrix(0,100,100)
A2[lower.tri(A2)] <- runif(4950, -0.025, 0.025)
A2 <- A2 + t(A2)
diag(A2) <- runif(100,0.95,1.05)
y <- t(rmvnorm(1,sigma=A1*0.25)+rmvnorm(1,sigma=A2*0.25))
y <- y + rnorm(100,sd=sqrt(0.5))
#y[100] <- NA
x <- rnorm(100)
dat <- cbind(y,x)
colnames(dat) <- c("y","x")
dat[100,1] <- NA #<--Note that the last row of the dataset is being set to NA.
testmod <- mxModel(
"GREMLtest",
mxMatrix(type = "Full", nrow = 1, ncol=1, free=T, values =0.5, labels = "ve", lbound = 0.0001,
name = "Ve"),
mxMatrix(type = "Full", nrow = 1, ncol=1, free=T, values = 0.25, labels = "va1", name = "Va1"),
mxMatrix(type = "Full", nrow = 1, ncol=1, free=T, values = 0.25, labels = "va2", name = "Va2"),
mxData(observed = dat, type="raw", sort=FALSE),
mxExpectationGREML(V="V",yvars="y", Xvars="x", addOnes=T),
mxComputeSequence(steps=list(
mxComputeNewtonRaphson(fitfunction="fitfunction"),
mxComputeOnce('fitfunction', c('fit','gradient','hessian','ihessian')),
mxComputeStandardError(),
mxComputeReportDeriv()
)),
mxMatrix("Iden",nrow=100,name="I"),
mxMatrix("Symm",nrow=100,free=F,values=A1,name="A1"),
mxMatrix("Symm",nrow=100,free=F,values=A2,name="A2"),
mxAlgebra((A1%x%Va1) + (A2%x%Va2) + (I%x%Ve), name="V"),
mxFitFunctionGREML(dV=c(va1="A1",va2="A2",ve="I"))
)
testrun <- mxRun(testmod) #<--Should run without error.
omxCheckEquals(dim(testrun$V$result),c(100,100))
dat[,1] <- y
dat[90:99,1] <- NA
testmod2 <- mxModel(
"GREMLtest",
mxMatrix(type = "Full", nrow = 1, ncol=1, free=T, values =0.5, labels = "ve", lbound = 0.0001,
name = "Ve"),
mxMatrix(type = "Full", nrow = 1, ncol=1, free=T, values = 0.25, labels = "va1", name = "Va1"),
mxMatrix(type = "Full", nrow = 1, ncol=1, free=T, values = 0.25, labels = "va2", name = "Va2"),
mxData(observed = dat, type="raw", sort=FALSE),
mxExpectationGREML(V="V",yvars="y", Xvars="x", addOnes=T),
mxComputeSequence(steps=list(
mxComputeNewtonRaphson(fitfunction="fitfunction"),
mxComputeOnce('fitfunction', c('fit','gradient','hessian','ihessian')),
mxComputeStandardError(),
mxComputeReportDeriv()
)),
mxMatrix("Symm",nrow=100,free=F,values=A1,name="A1"),
mxMatrix("Symm",nrow=100,free=F,values=A2,name="A2"),
mxMatrix(type="Unit",nrow=100,ncol=1,name="Uni"),
#Note that the derivatives of V are all MxAlgebras:
mxAlgebra(vec2diag(Uni),name="I"),
mxAlgebra(A1%x%1,name="dV_dva1"),
mxAlgebra(A2%x%1,name="dV_dva2"),
mxAlgebra((A1%x%Va1) + (A2%x%Va2) + (I%x%Ve), name="V"),
mxFitFunctionGREML(dV=c(va1="dV_dva1",va2="dV_dva2",ve="I"))
)
testrun2 <- mxRun(testmod2) #<--Should run without error.
omxCheckEquals(dim(testrun2$I$result),c(100,100))
omxCheckEquals(dim(testrun2$dV_dva1$result),c(100,100))
omxCheckEquals(dim(testrun2$dV_dva2$result),c(100,100))
omxCheckEquals(dim(testrun2$V$result),c(100,100))
#As of commit 384faf7, it should be possible to frontend-downsize derivatives of V that are both MxAlgebras
#and don't depend upon parameters, and things should still work:
testmod3 <- mxModel(
"GREMLtest",
mxMatrix(type = "Full", nrow = 1, ncol=1, free=T, values =0.5, labels = "ve", lbound = 0.0001,
name = "Ve"),
mxMatrix(type = "Full", nrow = 1, ncol=1, free=T, values = 0.25, labels = "va1", name = "Va1"),
mxMatrix(type = "Full", nrow = 1, ncol=1, free=T, values = 0.25, labels = "va2", name = "Va2"),
mxData(observed = dat, type="raw", sort=FALSE),
mxExpectationGREML(V="V",yvars="y", Xvars="x", addOnes=T),
mxComputeSequence(steps=list(
mxComputeNewtonRaphson(fitfunction="fitfunction"),
mxComputeOnce('fitfunction', c('fit','gradient','hessian','ihessian')),
mxComputeStandardError(),
mxComputeReportDeriv()
)),
#The two GRMs right below are dependencies of V, so they need to be 100x100:
mxMatrix("Symm",nrow=100,free=F,values=A1,name="A1"),
mxMatrix("Symm",nrow=100,free=F,values=A2,name="A2"),
mxMatrix(type="Unit",nrow=100,ncol=1,name="Uni"),
#Derivatives of V:
mxMatrix("Symm",nrow=90,free=F,values=A1[c(1:89,100),c(1:89,100)],name="dV_dva1"),
mxAlgebra(A2%x%1,name="dV_dva2"),
mxAlgebra(vec2diag(Uni[1:90,1]), name="dV_dve"),
mxAlgebra((A1%x%Va1) + (A2%x%Va2) + vec2diag(Uni%x%Ve), name="V"),
mxFitFunctionGREML(dV=c(va1="dV_dva1",va2="dV_dva2",ve="dV_dve"))
)
testrun3 <- mxRun(testmod3)
#The important thing is that everything come back with the dimensions the user has said they should be:
omxCheckEquals(dim(testrun3$V$result),c(100,100))
omxCheckEquals(dim(testrun3$dV_dva1$values),c(90,90))
omxCheckEquals(dim(testrun3$dV_dva2$result),c(100,100))
omxCheckEquals(dim(testrun3$dV_dve$result),c(90,90))
#For a simple model like this, it should also be possible to frontend-downsize everything, if you call
#the data-handler before runtime and plan accordingly:
gremldat <- mxGREMLDataHandler(data=dat,yvars="y",Xvars="x")
testmod4 <- mxModel(
"GREMLtest",
mxMatrix(type = "Full", nrow = 1, ncol=1, free=T, values =0.5, labels = "ve", lbound = 0.0001,
name = "Ve"),
mxMatrix(type = "Full", nrow = 1, ncol=1, free=T, values = 0.25, labels = "va1", name = "Va1"),
mxMatrix(type = "Full", nrow = 1, ncol=1, free=T, values = 0.25, labels = "va2", name = "Va2"),
mxData(observed = gremldat$yX, type="raw", sort=FALSE),
mxExpectationGREML(V="V",dataset.is.yX=TRUE), #<--Note we don't provide any casesToDropFromV.
mxComputeSequence(steps=list(
mxComputeNewtonRaphson(fitfunction="fitfunction"),
mxComputeOnce('fitfunction', c('fit','gradient','hessian','ihessian')),
mxComputeStandardError(),
mxComputeReportDeriv()
)),
mxMatrix("Symm",nrow=90,free=F,values=A1[c(1:89,100),c(1:89,100)],name="A1"),
mxMatrix("Symm",nrow=90,free=F,values=A2[c(1:89,100),c(1:89,100)],name="A2"),
mxMatrix("Iden",nrow=90,name="I"),
mxAlgebra((A1%x%Va1) + (A2%x%Va2) + I%x%Ve, name="V"),
mxFitFunctionGREML(dV=c(va1="A1",va2="A2",ve="I"))
)
testrun4 <- mxRun(testmod4) #<--Should run without error.
|