1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134
|
#
# Copyright 2007-2020 by the individuals mentioned in the source code history
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
require(OpenMx)
set.seed(1234)
dat <- cbind(rnorm(100),rep(1,100))
colnames(dat) <- c("y","x")
ge <- mxExpectationGREML(V="V",yvars="y", Xvars="x", addOnes=FALSE)
gff <- mxFitFunctionGREML(dV=c(ve="I"))
plan <- mxComputeSequence(steps=list(
mxComputeNewtonRaphson(fitfunction="fitfunction"),
mxComputeOnce('fitfunction', c('fit','gradient','hessian','ihessian')),
mxComputeStandardError(),
mxComputeReportDeriv(),
mxComputeReportExpectation()
))
testmod <- mxModel(
"GREMLtest",
mxData(observed = dat, type="raw", sort=FALSE),
mxMatrix(type = "Full", nrow = 1, ncol=1, free=T, values = 2, labels = "ve", lbound = 0.0001, name = "Ve"),
mxMatrix("Iden",nrow=100,name="I",condenseSlots=T),
mxAlgebra(I %x% Ve,name="V"),
ge,
gff,
plan
)
testrun <- mxRun(testmod)
omxCheckCloseEnough(testrun$output$estimate[1],var(dat[,1]),epsilon=10^-5)
omxCheckCloseEnough(testrun$expectation$b,mean(dat[,1]),epsilon=10^-5)
omxCheckCloseEnough(testrun$expectation$bcov,var(dat[,1])/100,epsilon=10^-5)
omxCheckCloseEnough(testrun$output$standardErrors[1],sqrt((2*testrun$output$estimate^2)/100),epsilon=10^-3)
testrunsumm <- summary(testrun)
omxCheckEquals(testrunsumm$numObs,1)
omxCheckEquals(testrunsumm$estimatedParameters,2)
omxCheckEquals(testrunsumm$observedStatistics,100)
omxCheckEquals(testrunsumm$degreesOfFreedom,98)
#Check GREML-specific part of summary() output:
omxCheckEquals(testrunsumm$GREMLfixeff$name,"x")
omxCheckCloseEnough(testrunsumm$GREMLfixeff$coeff,mean(dat[,1]),epsilon=10^-5)
omxCheckCloseEnough(testrunsumm$GREMLfixeff$se,sqrt(var(dat[,1])/100),epsilon=10^-5)
gff2 <- mxFitFunctionGREML()
testmod2 <- mxModel(
"GREMLtest",
mxData(observed = dat, type="raw", sort=FALSE),
mxMatrix(type = "Full", nrow = 1, ncol=1, free=T, values = 2, labels = "ve", lbound = 0.0001, name = "Ve"),
mxMatrix("Iden",nrow=100,name="I",condenseSlots=T),
mxAlgebra(I %x% Ve,name="V"),
ge,
gff2
)
testrun2 <- mxRun(testmod2)
omxCheckCloseEnough(testrun2$output$estimate[1],var(dat[,1]),epsilon=10^-5)
omxCheckCloseEnough(testrun2$expectation$b,mean(dat[,1]),epsilon=10^-5)
omxCheckCloseEnough(testrun2$expectation$bcov,var(dat[,1])/100,epsilon=10^-5)
testrun2summ <- summary(testrun2)
omxCheckEquals(testrun2summ$numObs,1)
omxCheckEquals(testrun2summ$estimatedParameters,2)
omxCheckEquals(testrun2summ$observedStatistics,100)
omxCheckEquals(testrun2summ$degreesOfFreedom,98)
#Check GREML-specific part of summary() output:
omxCheckEquals(testrun2summ$GREMLfixeff$name,"x")
omxCheckCloseEnough(testrun2summ$GREMLfixeff$coeff,mean(dat[,1]),epsilon=10^-5)
omxCheckCloseEnough(testrun2summ$GREMLfixeff$se,sqrt(var(dat[,1])/100),epsilon=10^-5)
#Test GREML expectation used with FIML fitfunction:
testmod3 <- mxModel(
"GREMLtest",
mxData(observed = dat, type="raw", sort=FALSE),
mxMatrix(type = "Full", nrow = 1, ncol=1, free=T, values = 2, labels = "ve", lbound = 0.0001, name = "Ve"),
mxMatrix("Iden",nrow=100,name="I",condenseSlots=T),
mxAlgebra(I %x% Ve,name="V"),
ge,
mxFitFunctionML()
)
testrun3 <- mxRun(testmod3)
#I had thought this would be obvious, but evidently it wasn't. The tests below are checking to see if the ML estimate of the variance is
#close enough to the directly calculated sample variance with N, not N-1, in the denominator.
#Note that var() uses N-1 in the denominator.
#In contrast, the REML estimate is supposed to beclose to the directly calculated sample variance with N-1 in the denominator
#(as in testrun and testrun2 above):
omxCheckCloseEnough(testrun3$output$estimate[1],var(dat[,1])*99/100,epsilon=10^-5)
omxCheckCloseEnough(testrun3$expectation$b,mean(dat[,1]),epsilon=10^-5)
omxCheckCloseEnough(testrun3$expectation$bcov,(var(dat[,1])*99/100)/100,epsilon=10^-5)
#MLfit from testrun should match fit of testrun3:
omxCheckCloseEnough(testrun3$output$minimum, testrun$fitfunction$MLfit, epsilon=10^-2)
testrun3summ <- summary(testrun3)
#FIML fitfunction doesn't know how to tell the frontend that a GREML analysis involves only 1 observation:
omxCheckEquals(testrun3summ$numObs,100) # should be 1
omxCheckEquals(testrun3summ$estimatedParameters,2)
omxCheckEquals(testrun3summ$observedStatistics,100)
omxCheckEquals(testrun3summ$degreesOfFreedom,98)
#Check GREML-specific part of summary() output:
omxCheckEquals(testrun3summ$GREMLfixeff$name,"x")
omxCheckCloseEnough(testrun3summ$GREMLfixeff$coeff,mean(dat[,1]),epsilon=10^-5)
omxCheckCloseEnough(testrun3summ$GREMLfixeff$se,sqrt(var(dat[,1])*99/100/100),epsilon=10^-5)
# Test use of mxAutoStart() :
testmod_as <- mxAutoStart(testmod)
omxCheckCloseEnough(coef(testmod_as),coef(testrun)*99/100,2e-7)
testmod2_as <- mxAutoStart(testmod2)
omxCheckCloseEnough(coef(testmod2_as),coef(testrun2)*99/100,2e-7)
testmod3_as <- mxAutoStart(testmod3)
omxCheckCloseEnough(coef(testmod3_as),coef(testrun3),2e-7)
|