1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141
|
#
# Copyright 2007-2021 by the individuals mentioned in the source code history
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ---------------------------------------------------------------------
# Program: BivariateRaw-OpenMx100214.R
# Author: Steven M. Boker
# Date: Sun Feb 14 13:27:16 EST 2010
#
# This program fits a FIML bivariate model to the
# multiData simulated data.
#
#
# ---------------------------------------------------------------------
# Revision History
# -- Sun Feb 14 13:27:13 EST 2010
# Created BivariateRaw-OpenMx100214.R.
# -- Sun Aug 29 2010
# Formatted for OpenMx Test Suite
# ---------------------------------------------------------------------
# ----------------------------------
# Read libraries and set options.
library(OpenMx)
suppressWarnings(RNGversion("3.5"))
# ----------------------------------
# Read the data and print descriptive statistics.
data(multiData1)
# ----------------------------------
# Build an OpenMx bivariate regression model using y and x1
manifests <- c("x1", "x2", "y")
biRegModelRaw <- mxModel("FIML Bivariate Regression of y on x1 and x2",
type="RAM",
manifestVars=manifests,
mxPath(from=c("x1","x2"), to="y",
arrows=1,
free=TRUE, values=.2, labels=c("b1", "b2")),
mxPath(from=manifests,
arrows=2,
free=TRUE, values=.8,
labels=c("VarX1", "VarX2", "VarE")),
mxPath(from="x1", to="x2",
arrows=2,
free=TRUE, values=.2,
labels=c("CovX1X2")),
mxData(observed=multiData1, type="raw")
)
omxCheckError(mxRun(biRegModelRaw, suppressWarnings=TRUE),
paste("The job for model 'FIML Bivariate Regression of y on x1 and x2' exited abnormally with the error message:",
"MxExpectationRAM: raw data observed but no expected means vector was provided. Add something like mxPath(from = 'one', to = manifests) to your model."))
biRegModelRaw <- mxModel(
biRegModelRaw,
mxPath(from="one", to=manifests,
arrows=1, free=TRUE, values=.1,
labels=c("MeanX1", "MeanX2", "MeanY")))
biRegModelRawOut <- mxRun(biRegModelRaw)
summary(biRegModelRawOut)
omxCheckWarning(summary(biRegModelRawOut, boot.quantile=c(.025,.975)),
"No bootstrap data found. See ?mxBootstrap")
# ----------------------------------
# check for correct values
expectVal <- c(0.4479, 0.4328, 1.1364, 0.5811, 1.5556, 1.412, 0.9849,
1.9741, 2.5529)
expectSE <- c(0.0554, 0.0474, 0.0719, 0.0649, 0.0984, 0.0893, 0.0477, 0.0558,
0.1004)
expectMin <- 4608.207
omxCheckCloseEnough(expectVal, biRegModelRawOut$output$estimate, 0.001)
omxCheckCloseEnough(expectSE,
as.vector(biRegModelRawOut$output[['standardErrors']]), 0.001)
omxCheckCloseEnough(expectMin, biRegModelRawOut$output$minimum, 0.001)
omxCheckCloseEnough(biRegModelRawOut$output$status$code, 0)
omxCheckCloseEnough(biRegModelRawOut$output$iterations, 30, 10)
biRegModelRawBoot <- mxBootstrap(biRegModelRawOut, 10, OK=NULL)
ign <- omxCheckWarning(summary(biRegModelRawBoot),
"Only 0% of the bootstrap replications converged. Accuracy is much less than the 10 replications requested")
set.seed(42)
biRegModelRawBoot <- mxBootstrap(biRegModelRawOut, 10)
omxCheckTrue(is.null(biRegModelRawBoot$output[["standardErrors"]]))
bq1 <- summary(biRegModelRawBoot)[["bootstrapSE"]]
omxCheckCloseEnough(cor(bq1, biRegModelRawOut$output$standardErrors), 1, .16)
biRegModelRawBoot <- mxBootstrap(biRegModelRawBoot)
bq2 <- summary(biRegModelRawBoot)[["bootstrapSE"]]
omxCheckCloseEnough(sum((bq2 - biRegModelRawOut$output$standardErrors)^2), 0, 3.5e-3)
set.seed(42)
biRegModelRawBoot <- mxBootstrap(biRegModelRawBoot, 10)
bq3 <- summary(biRegModelRawBoot)[["bootstrapSE"]]
omxCheckEquals(bq3, bq1)
repl3 <- biRegModelRawBoot$compute$output$raw[3,]
biRegModelRawBoot3 <- mxBootstrap(biRegModelRawBoot, only=3)
omit <- -match('statusCode', colnames(repl3))
omxCheckCloseEnough(repl3[,omit], biRegModelRawBoot3$compute$output$raw[,omit], 1e-6)
# investigate replication 3
biRegModelRaw3 <- mxModel(
biRegModelRaw,
mxData(observed=cbind(multiData1,
freq=biRegModelRawBoot3$compute$output$frequency[[1]]),
type="raw", frequency = "freq"))
biRegModelRaw3 <- mxRun(biRegModelRaw3)
omxCheckCloseEnough(coef(biRegModelRaw3),
unlist(repl3[,names(coef(biRegModelRaw3))]), 1e-5)
|