1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131
|
#
# Copyright 2007-2018 by the individuals mentioned in the source code history
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# -----------------------------------------------------------------------------
# Program: OneFactorModel_PathCov.R
# Author: Ryne Estabrook
# Date: 2009.08.01
#
# ModelType: Factor
# DataType: Continuous
# Field: None
#
# Purpose:
# One Factor model to estimate factor loadings,
# residual variances and means
# Path style model input - Covariance matrix data input
#
# RevisionHistory:
# Hermine Maes -- 2009.10.08 updated & reformatted
# Ross Gore -- 2011.06.06 added Model, Data & Field metadata
# -----------------------------------------------------------------------------
require(OpenMx)
# Load Library
# -----------------------------------------------------------------------------
myFADataCov<-matrix(
c(0.997, 0.642, 0.611, 0.672, 0.637, 0.677,
0.642, 1.025, 0.608, 0.668, 0.643, 0.676,
0.611, 0.608, 0.984, 0.633, 0.657, 0.626,
0.672, 0.668, 0.633, 1.003, 0.676, 0.665,
0.637, 0.643, 0.657, 0.676, 1.028, 0.654,
0.677, 0.676, 0.626, 0.665, 0.654, 1.020),
nrow=6,
dimnames=list(
c("x1","x2","x3","x4","x5","x6"),
c("x1","x2","x3","x4","x5","x6"))
)
myFADataMeans <- c(2.988, 3.011, 2.986, 3.053, 3.016, 3.010)
names(myFADataMeans) <- c("x1","x2","x3","x4","x5","x6")
# Prepare Data
# -----------------------------------------------------------------------------
oneFactorModel <- mxModel("Common Factor Model Path Specification",
type="RAM",
mxData(
observed=myFADataCov,
type="cov",
numObs=500,
mean=myFADataMeans
),
manifestVars=rev(c("x1","x2","x3","x4","x5","x6")),
latentVars="F1",
mxPath(
from=c("x1","x2","x3","x4","x5","x6"),
arrows=2,
free=TRUE,
values=c(1,1,1,1,1,1),
labels=c("e1","e2","e3","e4","e5","e6")
),
# residual variances
# -------------------------------------
mxPath(from="F1",
arrows=2,
free=TRUE,
values=1,
labels ="varF1"
),
# -------------------------------------
# latent variance
mxPath(from="F1",
to=c("x1","x2","x3","x4","x5","x6"),
arrows=1,
free=c(FALSE,TRUE,TRUE,TRUE,TRUE,TRUE),
values=c(1,1,1,1,1,1),
labels =c("l1","l2","l3","l4","l5","l6")
),
# factor loadings
# --------------------------------------
mxPath(from="one",
to=c("x1","x2","x3","x4","x5","x6","F1"),
arrows=1,
free=c(TRUE,TRUE,TRUE,TRUE,TRUE,TRUE,FALSE),
values=c(1,1,1,1,1,1,0),
labels =c("meanx1","meanx2","meanx3","meanx4","meanx5","meanx6",NA)
)
# means
# -------------------------------------
) # close model
# Create an MxModel object
# -----------------------------------------------------------------------------
oneFactorFit <- mxRun(oneFactorModel)
summary(oneFactorFit)
oneFactorFit$output$estimate
omxCheckCloseEnough(oneFactorFit$output$estimate[["l2"]], 0.999, 0.01)
omxCheckCloseEnough(oneFactorFit$output$estimate[["l3"]], 0.959, 0.01)
omxCheckCloseEnough(oneFactorFit$output$estimate[["l4"]], 1.028, 0.01)
omxCheckCloseEnough(oneFactorFit$output$estimate[["l5"]], 1.008, 0.01)
omxCheckCloseEnough(oneFactorFit$output$estimate[["l6"]], 1.021, 0.01)
omxCheckCloseEnough(oneFactorFit$output$estimate[["varF1"]], 0.645, 0.01)
omxCheckCloseEnough(oneFactorFit$output$estimate[["e1"]], 0.350, 0.01)
omxCheckCloseEnough(oneFactorFit$output$estimate[["e2"]], 0.379, 0.01)
omxCheckCloseEnough(oneFactorFit$output$estimate[["e3"]], 0.389, 0.01)
omxCheckCloseEnough(oneFactorFit$output$estimate[["e4"]], 0.320, 0.01)
omxCheckCloseEnough(oneFactorFit$output$estimate[["e5"]], 0.370, 0.01)
omxCheckCloseEnough(oneFactorFit$output$estimate[["e6"]], 0.346, 0.01)
omxCheckCloseEnough(oneFactorFit$output$estimate[["meanx1"]], 2.988, 0.01)
omxCheckCloseEnough(oneFactorFit$output$estimate[["meanx2"]], 3.011, 0.01)
omxCheckCloseEnough(oneFactorFit$output$estimate[["meanx3"]], 2.986, 0.01)
omxCheckCloseEnough(oneFactorFit$output$estimate[["meanx4"]], 3.053, 0.01)
omxCheckCloseEnough(oneFactorFit$output$estimate[["meanx5"]], 3.016, 0.01)
omxCheckCloseEnough(oneFactorFit$output$estimate[["meanx6"]], 3.010, 0.01)
# Compare OpenMx results to Mx results
# -----------------------------------------------------------------------------
|