1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230
|
#
# Copyright 2007-2018 by the individuals mentioned in the source code history
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# -----------------------------------------------------------------------
# Program: UnivariateTwinAnalysis_MatrixRaw.R
# Author: Hermine Maes
# Date: 08 01 2009
#
# Univariate Twin Analysis model to estimate causes of variation (ACE)
# Matrix style model input - Raw data input
#
# Revision History
# Hermine Maes -- 10 08 2009 updated & reformatted
# -----------------------------------------------------------------------
require(OpenMx)
#Prepare Data
# -----------------------------------------------------------------------
data(twinData)
summary(twinData)
selVars <- c('bmi1','bmi2')
mzfData <- as.matrix(subset(twinData, zyg==1, c(bmi1,bmi2)))
dzfData <- as.matrix(subset(twinData, zyg==3, c(bmi1,bmi2)))
colMeans(mzfData,na.rm=TRUE)
colMeans(dzfData,na.rm=TRUE)
cov(mzfData,use="complete")
cov(dzfData,use="complete")
#Fit ACE Model with RawData and Matrices Input
# -----------------------------------------------------------------------
twinACEModel <- mxModel("twinACE",
# Matrices X, Y, and Z to store a, c, and e path coefficients
mxMatrix(
type="Full",
nrow=1,
ncol=1,
free=TRUE,
values=.6,
label="a",
name="X"
),
mxMatrix(
type="Full",
nrow=1,
ncol=1,
free=TRUE,
values=.6,
label="c",
name="Y"
),
mxMatrix(
type="Full",
nrow=1,
ncol=1,
free=TRUE,
values=.6,
label="e",
name="Z"
),
# Matrices A, C, and E compute variance components
mxAlgebra(
expression=X %*% t(X),
name="A"
),
mxAlgebra(
expression=Y %*% t(Y),
name="C"
),
mxAlgebra(
expression=Z %*% t(Z),
name="E"
),
mxMatrix(
type="Full",
nrow=1,
ncol=2,
free=TRUE,
values= 20,
label="mean",
name="expMean"
),
# Algebra for expected variance/covariance matrix in MZ
mxAlgebra(
expression= rbind (cbind(A+C+E , A+C),
cbind(A+C , A+C+E)),
name="expCovMZ"
),
# Algebra for expected variance/covariance matrix in DZ
# note use of 0.5, converted to 1*1 matrix
mxAlgebra(
expression= rbind (cbind(A+C+E , 0.5%x%A+C),
cbind(0.5%x%A+C , A+C+E)),
name="expCovDZ"
),
mxModel("MZ",
mxData(
observed=mzfData,
type="raw"
),
mxExpectationNormal(
covariance="twinACE.expCovMZ",
means="twinACE.expMean",
dimnames=selVars
),
mxFitFunctionML(vector=TRUE)
),
mxModel("DZ",
mxData(
observed=dzfData,
type="raw"
),
mxFitFunctionML(),mxExpectationNormal(
covariance="twinACE.expCovDZ",
means="twinACE.expMean",
dimnames=selVars
),
mxFitFunctionML(vector=TRUE)
),
mxAlgebra(
expression=-2.0 *sum(log(MZ.objective), log(DZ.objective)),
name="twin"
),
mxFitFunctionAlgebra("twin")
)
#Run ACE model
# -----------------------------------------------------------------------
twinACEFit <- mxRun(twinACEModel)
MZc <- mxEval(expCovMZ, twinACEFit) # expected covariance matrix for MZ's
DZc <- mxEval(expCovDZ, twinACEFit) # expected covariance matrix for DZ's
M <- mxEval(expMean, twinACEFit) # expected mean
A <- mxEval(a*a, twinACEFit) # additive genetic variance, a^2
C <- mxEval(c*c, twinACEFit) # shared environmental variance, c^2
E <- mxEval(e*e, twinACEFit) # unique environmental variance, e^2
V <- (A+C+E) # total variance
a2 <- A/V # standardized additive genetic variance
c2 <- C/V # standardized shared environmental variance
e2 <- E/V # standardized unique environmental variance
ACEest <- rbind(cbind(A,C,E),cbind(a2,c2,e2)) # table of estimates
LL_ACE <- mxEval(objective, twinACEFit) # likelihood of ACE model
#Mx answers hard-coded
# -----------------------------------------------------------------------
#1: Heterogeneity Model
Mx.A <- 0.6173023
Mx.C <- 5.595822e-14
Mx.E <- 0.1730462
Mx.M <- matrix(c(21.39293, 21.39293),1,2)
Mx.LL_ACE <- 4067.663
#Compare OpenMx results to Mx results (LL: likelihood; EC: expected covariance, EM: expected means)
# -----------------------------------------------------------------------
omxCheckCloseEnough(LL_ACE,Mx.LL_ACE,.001)
omxCheckCloseEnough(A,Mx.A,.001)
omxCheckCloseEnough(C,Mx.C,.001)
omxCheckCloseEnough(E,Mx.E,.001)
omxCheckCloseEnough(M,Mx.M,.001)
#Run AE model
# -----------------------------------------------------------------------
twinAEModel <- mxModel(twinACEModel, #name = "twinAE",
# drop c at 0
mxMatrix(
type="Full",
nrow=1,
ncol=1,
free=FALSE,
values=0,
label="c",
name="Y"
)
)
twinAEFit <- mxRun(twinAEModel)
MZc <- mxEval(expCovMZ, twinAEFit)
DZc <- mxEval(expCovDZ, twinAEFit)
M <- mxEval(expMean, twinAEFit)
A <- mxEval(a*a, twinAEFit)
C <- mxEval(c*c, twinAEFit)
E <- mxEval(e*e, twinAEFit)
V <- (A+C+E)
a2 <- A/V
c2 <- C/V
e2 <- E/V
AEest <- rbind(cbind(A,C,E),cbind(a2,c2,e2))
LL_AE <- mxEval(objective, twinAEFit)
#Mx answers hard-coded
# -----------------------------------------------------------------------
#1: Homogeneity Model
Mx.A <- 0.6173023
Mx.C <- 0
Mx.E <- 0.1730462
Mx.M <- matrix(c(21.39293, 21.39293),1,2)
Mx.LL_AE <- 4067.663
#Compare OpenMx results to Mx results
# -----------------------------------------------------------------------
# (LL: likelihood; EC: expected covariance, EM: expected means)
omxCheckCloseEnough(LL_AE,Mx.LL_AE,.001)
omxCheckCloseEnough(A,Mx.A,.001)
omxCheckCloseEnough(C,Mx.C,.001)
omxCheckCloseEnough(E,Mx.E,.001)
omxCheckCloseEnough(M,Mx.M,.001)
LRT_ACE_AE <- LL_AE - LL_ACE
#Print relevant output
# -----------------------------------------------------------------------
ACEest
AEest
LRT_ACE_AE
|