File: TwinAnalysisLikelihoodVector.R

package info (click to toggle)
r-cran-openmx 2.21.13%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 13,716 kB
  • sloc: cpp: 36,559; ansic: 13,821; fortran: 2,001; sh: 1,440; python: 350; perl: 21; makefile: 11
file content (230 lines) | stat: -rw-r--r-- 6,184 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
#
#   Copyright 2007-2018 by the individuals mentioned in the source code history
#
#   Licensed under the Apache License, Version 2.0 (the "License");
#   you may not use this file except in compliance with the License.
#   You may obtain a copy of the License at
# 
#        http://www.apache.org/licenses/LICENSE-2.0
# 
#   Unless required by applicable law or agreed to in writing, software
#   distributed under the License is distributed on an "AS IS" BASIS,
#   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#   See the License for the specific language governing permissions and
#   limitations under the License.


# -----------------------------------------------------------------------
# Program: UnivariateTwinAnalysis_MatrixRaw.R  
#  Author: Hermine Maes
#    Date: 08 01 2009 
#
# Univariate Twin Analysis model to estimate causes of variation (ACE)
# Matrix style model input - Raw data input
#
# Revision History
#   Hermine Maes -- 10 08 2009 updated & reformatted
# -----------------------------------------------------------------------

require(OpenMx)

#Prepare Data
# -----------------------------------------------------------------------
data(twinData)
summary(twinData)
selVars <- c('bmi1','bmi2')
mzfData <- as.matrix(subset(twinData, zyg==1, c(bmi1,bmi2)))
dzfData <- as.matrix(subset(twinData, zyg==3, c(bmi1,bmi2)))
colMeans(mzfData,na.rm=TRUE)
colMeans(dzfData,na.rm=TRUE)
cov(mzfData,use="complete")
cov(dzfData,use="complete")

#Fit ACE Model with RawData and Matrices Input
# -----------------------------------------------------------------------
twinACEModel <- mxModel("twinACE",
	# Matrices X, Y, and Z to store a, c, and e path coefficients
	mxMatrix(
		type="Full", 
		nrow=1, 
		ncol=1, 
		free=TRUE,  
		values=.6,  
		label="a", 
		name="X"
	), 
	mxMatrix(
		type="Full", 
		nrow=1, 
		ncol=1, 
		free=TRUE,  
		values=.6,  
		label="c", 
		name="Y"
	),
	mxMatrix(
		type="Full", 
		nrow=1, 
		ncol=1, 
		free=TRUE,  
		values=.6,  
		label="e", 
		name="Z"
	),
	# Matrices A, C, and E compute variance components
	mxAlgebra(
		expression=X %*% t(X), 
		name="A"
	), 
	mxAlgebra(
		expression=Y %*% t(Y), 
		name="C"
	), 
	mxAlgebra(
		expression=Z %*% t(Z), 
		name="E"
	),
	mxMatrix(
		type="Full", 
		nrow=1, 
		ncol=2, 
		free=TRUE, 
		values= 20,
		label="mean", 
		name="expMean"
	),
    # Algebra for expected variance/covariance matrix in MZ
    mxAlgebra(
		expression= rbind  (cbind(A+C+E , A+C),
							cbind(A+C   , A+C+E)), 
		name="expCovMZ"
	),
    # Algebra for expected variance/covariance matrix in DZ
    # note use of 0.5, converted to 1*1 matrix
    mxAlgebra(
		expression= rbind  (cbind(A+C+E     , 0.5%x%A+C),
							cbind(0.5%x%A+C , A+C+E)), 
		name="expCovDZ"
	),
	mxModel("MZ",
	    mxData(
			observed=mzfData, 
			type="raw"
		), 
		mxExpectationNormal(
			covariance="twinACE.expCovMZ", 
			means="twinACE.expMean", 
			dimnames=selVars
		),
		mxFitFunctionML(vector=TRUE)
	),
	mxModel("DZ",
	    mxData(
			observed=dzfData, 
			type="raw"
		), 
		mxFitFunctionML(),mxExpectationNormal(
			covariance="twinACE.expCovDZ", 
			means="twinACE.expMean", 
			dimnames=selVars
		),
		mxFitFunctionML(vector=TRUE)
	),
    mxAlgebra(
		expression=-2.0 *sum(log(MZ.objective), log(DZ.objective)), 
		name="twin"
	), 
	mxFitFunctionAlgebra("twin")
)

#Run ACE model
# -----------------------------------------------------------------------
twinACEFit <- mxRun(twinACEModel)

MZc <- mxEval(expCovMZ, twinACEFit)  			# expected covariance matrix for MZ's
DZc <- mxEval(expCovDZ, twinACEFit)  			# expected covariance matrix for DZ's
M <- mxEval(expMean, twinACEFit)				# expected mean
A <- mxEval(a*a, twinACEFit)					# additive genetic variance, a^2
C <- mxEval(c*c, twinACEFit)					# shared environmental variance, c^2
E <- mxEval(e*e, twinACEFit)					# unique environmental variance, e^2
V <- (A+C+E)									# total variance
a2 <- A/V										# standardized additive genetic variance
c2 <- C/V										# standardized shared environmental variance
e2 <- E/V										# standardized unique environmental variance
ACEest <- rbind(cbind(A,C,E),cbind(a2,c2,e2)) 	# table of estimates
LL_ACE <- mxEval(objective, twinACEFit)			# likelihood of ACE model


#Mx answers hard-coded
# -----------------------------------------------------------------------
#1: Heterogeneity Model
Mx.A <- 0.6173023
Mx.C <- 5.595822e-14
Mx.E <- 0.1730462
Mx.M <- matrix(c(21.39293, 21.39293),1,2)
Mx.LL_ACE <- 4067.663

#Compare OpenMx results to Mx results (LL: likelihood; EC: expected covariance, EM: expected means)
# -----------------------------------------------------------------------
omxCheckCloseEnough(LL_ACE,Mx.LL_ACE,.001)
omxCheckCloseEnough(A,Mx.A,.001)
omxCheckCloseEnough(C,Mx.C,.001)
omxCheckCloseEnough(E,Mx.E,.001)
omxCheckCloseEnough(M,Mx.M,.001)


#Run AE model
# -----------------------------------------------------------------------
twinAEModel <- mxModel(twinACEModel, #name = "twinAE",
	# drop c at 0
	mxMatrix(
		type="Full", 
		nrow=1, 
		ncol=1, 
		free=FALSE, 
		values=0, 
		label="c", 
		name="Y"
	)	
)

twinAEFit <- mxRun(twinAEModel)

MZc <- mxEval(expCovMZ, twinAEFit)
DZc <- mxEval(expCovDZ, twinAEFit)
M <- mxEval(expMean, twinAEFit)
A <- mxEval(a*a, twinAEFit)
C <- mxEval(c*c, twinAEFit)
E <- mxEval(e*e, twinAEFit)
V <- (A+C+E)
a2 <- A/V
c2 <- C/V
e2 <- E/V
AEest <- rbind(cbind(A,C,E),cbind(a2,c2,e2))
LL_AE <- mxEval(objective, twinAEFit)

#Mx answers hard-coded
# -----------------------------------------------------------------------
#1: Homogeneity Model
Mx.A <- 0.6173023
Mx.C <- 0
Mx.E <- 0.1730462
Mx.M <- matrix(c(21.39293, 21.39293),1,2)
Mx.LL_AE <- 4067.663

#Compare OpenMx results to Mx results 
# -----------------------------------------------------------------------
# (LL: likelihood; EC: expected covariance, EM: expected means)
omxCheckCloseEnough(LL_AE,Mx.LL_AE,.001)
omxCheckCloseEnough(A,Mx.A,.001)
omxCheckCloseEnough(C,Mx.C,.001)
omxCheckCloseEnough(E,Mx.E,.001)
omxCheckCloseEnough(M,Mx.M,.001)

LRT_ACE_AE <- LL_AE - LL_ACE

#Print relevant output
# -----------------------------------------------------------------------
ACEest
AEest
LRT_ACE_AE