1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762
|
---
title: Mendelian randomization using the twin design
author:
- Luis Araujo
date: 2024
vignette: >
%\VignetteEngine{knitr::knitr}
%\VignetteIndexEntry{Mendelian randomization using the twin design}
%\usepackage[UTF-8]{inputenc}
---
```{r setup, include = F}
is_CRAN <- !identical(Sys.getenv("NOT_CRAN"), "true")
if (!is_CRAN) {
options(mc.cores = parallel::detectCores())
} else {
knitr::opts_chunk$set(eval = FALSE)
knitr::knit_hooks$set(evaluate.inline = function(x, envir) x)
}
```
This script is a modified version of Minica & Neale 2018 AGES workshop
In this script we will test the (bidirectional) causal effect between two
phenotypes, think of BMI on SBP (systolic blood pressure) and vice-versa,
and polygenic scores for each.
In the interest of brevity we will always refer to BMI as variable X, and SBP
as variable Y, with the respective instruments iX and iY.
There are four main take away messages that you should focus:
1. How to setup a simulation in OpenMX using mxGenerateData
2. That a two-stages least squares test can be specified in SEM in OpenMX
3. That MR-DoC recovers the same estimates from 2sls test
4. That in the presence of horizontal pleiotropy estimates are biased
in the 2sls test and unbiased in MR-DoC
The script contains four scenarios,
- no pleiotropy between the instrument and the outcome (Scenario 1),
- where there is pleiotropy (Scenario 2),
- presence of a bidirectional causal effect (Scenario 3)
- absence of a causal effect (Scenario 4)
See presentation slides for path diagrams.
If you are using RStudio you can navigate using the outline dropdown menu
Setting the stage ------------------------------------------------------------
```r
rm(list=ls()) # Emptying the R environment, not recommended usually but useful
# for this workshop
# loading required packages
library(OpenMx)
library(MASS)
library(dplyr)
options(digits = 2, scipen = 999) # we dont want scientific notation
mxOption(NULL, "Default optimizer", "SLSQP")
```
The models are specified in three objects, top (for common parts), MZ and DZ
spend some time recognizing the elements in the model, by now you should
have seen similar code. Notice two minor style changes, I am naming
the objects at the beginning and the matrices labels spelled out in the
positions they will end up in the matrix.
The final objects (mrdoc1, mrdoc2) will be reused throughout the script.
The matrix containing regressions for causal paths and instruments
```r
BE <- mxMatrix(name = "BE", type = "Full",nrow=3, ncol = 3, byrow = TRUE,
labels = c(NA, "g2", "b1",
"g1", NA, "b2",
NA, NA, NA),
free = c(FALSE, FALSE, TRUE,
TRUE, FALSE, TRUE,
FALSE, FALSE, FALSE),
dimnames = list(c("X", "Y", "iX"),
c("X", "Y", "iX")))
```
ACE decomposition
```r
A <- mxMatrix(name = 'A', type='Symm', nrow=3,ncol = 3,byrow = TRUE,
labels=c("ax2", "covA", NA,
"covA","ay2", NA,
NA, NA, "sigma_x"),
free=c(TRUE, TRUE, FALSE,
TRUE, TRUE, FALSE,
FALSE,FALSE,TRUE),
dimnames = list(c("X", "Y", "iX"),
c("X", "Y", "iX")))
C <- mxMatrix(name = 'C', type='Symm',nrow=3, ncol = 3,byrow = TRUE,
labels =c("cx2", "covC", NA,
"covC","cy2", NA,
NA, NA, NA),
free=c(TRUE, TRUE, FALSE,
TRUE, TRUE, FALSE,
FALSE,FALSE,FALSE),
dimnames = list(c("X", "Y", "iX"),
c("X", "Y", "iX")))
E <- mxMatrix(name = 'E', type='Symm', nrow=3, ncol = 3,byrow = TRUE,
labels =c("ex2", "covE",NA,
"covE","ey2", NA,
NA, NA, NA),
free= c(TRUE, FALSE,FALSE,
FALSE,TRUE, FALSE,
FALSE,FALSE,FALSE),
dimnames = list(c("X", "Y", "iX"),
c("X", "Y", "iX")))
```
The filter matrix is used to remove the PRS from _T2 in MZs,
if we kept it the matrix would become redundant resulting
in the Hessian not positive
```r
filter <- mxMatrix(name = 'filter', type='Full', nrow=5, ncol=6, free=FALSE,
byrow = TRUE,
values=c(1,0,0,0,0,0,
0,1,0,0,0,0,
0,0,1,0,0,0,
0,0,0,1,0,0,
0,0,0,0,1,0),
dimnames = list(c("X_T1", "Y_T1", "iX_T1","X_T2", "Y_T2"),
c("X_T1", "Y_T1", "iX_T1","X_T2", "Y_T2", "iX_T2")))
```
This lambda (LY) matrix is fixing total variances to 1 for PRSs and
phenotypes
```r
LY <- mxMatrix(name = 'LY', type='Full',nrow=3, ncol = 3, free = FALSE,
values = diag(3), labels = NA,
dimnames = list(c("X", "Y", "iX"),
c("X", "Y", "iX")))
```
Means objects
```r
mean_dz <- mxMatrix(name = 'mean_dz', type='Full', nrow=1, ncol=6,
free=TRUE, values= 0, byrow = TRUE,
labels=c('mX1','mY2','miX1','mX1','mY2','miX1'))
mean_mz <- mxAlgebra('mean_mz', expression = mean_dz%*%t(filter))
```
Identity matrix for the algebras
```r
I <- mxMatrix(name = 'I', type='Iden', nrow= 3,ncol= 3)
algebras <- list(
mxAlgebra('A_' , expression = LY %&% solve(I - BE)%&%A),
mxAlgebra('C_' , expression = LY %&% solve(I - BE)%&%C),
mxAlgebra('E_' , expression = LY %&% solve(I - BE)%&%E),
mxAlgebra('SPh' , expression = A_ + C_ + E_),
mxAlgebra('variance_mz_', expression = rbind(
cbind(SPh, A_+C_),
cbind(A_+C_, SPh))),
mxAlgebra('variance_dz', expression= rbind(
cbind(SPh, .5%x%A_+C_),
cbind(.5%x%A_+C_, SPh))),
mxAlgebra('variance_mz', expression= filter%&%variance_mz_))
top_mr1 <- mxModel("top", BE, A, C, E, filter, LY, mean_dz, mean_mz, I, algebras)
```
Preparing the objects for the multiple groups (MZ, DZ) analysis
```r
MZ_mr1 = mxModel("MZ",mxFitFunctionML(),
mxExpectationNormal(covariance = "top.variance_mz", means = "top.mean_mz",
dimnames = c("X_T1", "Y_T1", "iX_T1",
"X_T2", "Y_T2")))
DZ_mr1 = mxModel("DZ", mxFitFunctionML(),
mxExpectationNormal(covariance = "top.variance_dz", means = "top.mean_dz",
dimnames = c("X_T1", "Y_T1", "iX_T1",
"X_T2", "Y_T2", "iX_T2")))
```
Combining objects to generate the final model
```r
mrdoc1 = mxModel("mrdoc1", top_mr1, MZ_mr1, DZ_mr1,
mxFitFunctionMultigroup(c("MZ","DZ") ) )
```
Scenario 1: no pleiotropy ---------------------------------------------------
Generate simulated data for mrdoc1
Fit the model in unrelateds using a structural equation model
Fit the model in twins - using the MR-doc
Compare the NCPs of the models in unrelateds and twins
Look at the 2 stage least squares results
Let's generate simulated data where b2 (the pleiotropic path) is zero,
in other words, no pleiotropy present in the data.
As such we need to set the true values, this is a way of doing this:
```r
true_model <- mrdoc1 |>
omxSetParameters(labels = c("g1","b1", "b2",
"ax2", "ay2", "cx2", "cy2", "ex2", "ey2",
"covA", "covC", "covE","sigma_x"),
values = c(0.316, 0.316, 0,
0.424, 0.671, 0.671, 0.424, 0.519, 0.519,
0.411,0.221,0, 1)) |>
omxSetParameters(labels = c("b2"), free = FALSE) # remember, no pleiotropy
```
Simulating data according to the exact covariance matrix from mrdoc1 (above),
this is done using the switch empirical = T, this should be quick
```r
sim_data <- mxGenerateData(true_model, nrows = 1000, empirical = TRUE)
```
The data does not comes with the instrument column for the second twin,
we have to duplicate the column. In your analysis, this step will not happen,
we are doing this because of how I coded the simulation for this workshop.
```r
sim_data$MZ <- mutate(sim_data$MZ, iX_T2 = iX_T1)
dnpmz <- sim_data$MZ
dnpdz <- sim_data$DZ
dim(dnpdz) #
```
```
## [1] 1000 6
```
```r
head(dnpdz)
```
```
## X_T1 Y_T1 iX_T1 X_T2 Y_T2 iX_T2
## 1 1.17 1.63 -0.43 1.469 1.88 -0.28
## 2 -0.79 -0.79 0.39 -2.307 -2.29 -1.81
## 3 0.18 1.21 0.65 0.286 1.38 0.04
## 4 -1.74 -0.73 0.64 -0.908 -1.79 0.79
## 5 0.96 1.04 -0.36 -1.348 0.06 -1.50
## 6 -0.85 -0.56 -0.47 -0.074 -0.40 -1.21
```
```r
summary(dnpdz)
```
```
## X_T1 Y_T1 iX_T1 X_T2 Y_T2 iX_T2
## Min. :-5.0 Min. :-4.4 Min. :-3.4 Min. :-4.9 Min. :-4.8 Min. :-3.05
## 1st Qu.:-0.9 1st Qu.:-1.0 1st Qu.:-0.7 1st Qu.:-0.9 1st Qu.:-1.0 1st Qu.:-0.64
## Median :-0.1 Median : 0.0 Median : 0.0 Median : 0.0 Median : 0.0 Median : 0.07
## Mean : 0.0 Mean : 0.0 Mean : 0.0 Mean : 0.0 Mean : 0.0 Mean : 0.00
## 3rd Qu.: 0.8 3rd Qu.: 1.0 3rd Qu.: 0.7 3rd Qu.: 0.9 3rd Qu.: 1.0 3rd Qu.: 0.64
## Max. : 4.5 Max. : 5.4 Max. : 3.9 Max. : 4.6 Max. : 4.2 Max. : 2.83
```
```r
dim(dnpmz) #
```
```
## [1] 1000 6
```
```r
head(dnpmz)
```
```
## X_T1 Y_T1 iX_T1 X_T2 Y_T2 iX_T2
## 1 -0.064 1.70 -1.32 -0.39 1.160 -1.32
## 2 -1.285 -1.36 -0.60 -1.43 0.021 -0.60
## 3 0.299 0.44 -1.39 1.17 0.449 -1.39
## 4 -0.733 -2.93 -0.94 -0.61 -2.126 -0.94
## 5 1.016 -0.11 0.30 1.44 0.035 0.30
## 6 -1.071 0.18 -1.67 -1.21 -0.562 -1.67
```
```r
summary(dnpmz)
```
```
## X_T1 Y_T1 iX_T1 X_T2 Y_T2 iX_T2
## Min. :-4.2 Min. :-5.5 Min. :-3.4 Min. :-5.4 Min. :-6.7 Min. :-3.4
## 1st Qu.:-0.9 1st Qu.:-1.0 1st Qu.:-0.7 1st Qu.:-0.9 1st Qu.:-1.0 1st Qu.:-0.7
## Median : 0.0 Median : 0.0 Median : 0.0 Median : 0.0 Median : 0.0 Median : 0.0
## Mean : 0.0 Mean : 0.0 Mean : 0.0 Mean : 0.0 Mean : 0.0 Mean : 0.0
## 3rd Qu.: 0.9 3rd Qu.: 1.0 3rd Qu.: 0.7 3rd Qu.: 0.8 3rd Qu.: 1.0 3rd Qu.: 0.7
## Max. : 3.8 Max. : 4.3 Max. : 2.9 Max. : 4.3 Max. : 4.7 Max. : 2.9
```
We now add the data to the model object created before.
Notice that the plus sign is overloaded in OpenMx as it is, for example,
in ggplot2. So you can combine objects with the
syntax below instead of `model = mxModel(model, mxData(data, type = "raw"))`
This syntax is optional, but helps reducing the lenght of the script
```r
mrdoc1$MZ <- mrdoc1$MZ + mxData(dnpmz, type = "raw")
mrdoc1$DZ <- mrdoc1$DZ + mxData(dnpdz, type = "raw")
m1 <- mrdoc1 |>
# Remember, no b2 in data, no b2 in the model
omxSetParameters(labels = "b2", free = FALSE) |>
# The poing of examining the data a few lines above is to set sensible
# starting values for the model. Here, in the interest of brevity, we ask
# OpenMx to pick starting values for us.
mxAutoStart()
m1 <- mxRun(m1)
```
```
## Running mrdoc1 with 14 parameters
```
```r
# In your analyses, make sure to test for local identification frequently:
# mxCheckIdentification(m1)$status
# Model is locally identified
# [1] TRUE
summary(m1)
```
```
## Summary of mrdoc1
##
## free parameters:
## name matrix row col Estimate Std.Error A
## 1 g1 top.BE Y X 0.316000000123 0.028
## 2 b1 top.BE X iX 0.316000000040 0.021
## 3 ax2 top.A X X 0.423575999118 0.077
## 4 covA top.A X Y 0.410588999655 0.064
## 5 ay2 top.A Y Y 0.670328999037 0.089
## 6 sigma_x top.A iX iX 0.999000000056 0.026
## 7 cx2 top.C X X 0.670329000971 0.074
## 8 covC top.C X Y 0.220779000217 0.054
## 9 cy2 top.C Y Y 0.423576000776 0.080
## 10 ex2 top.E X X 0.518481000185 0.023
## 11 ey2 top.E Y Y 0.518481000190 0.023
## 12 mX1 top.mean_dz 1 X_T1 -0.000000000056 0.026
## 13 mY2 top.mean_dz 1 Y_T1 -0.000000000034 0.030
## 14 miX1 top.mean_dz 1 iX_T1 -0.000000000032 0.021
##
## Model Statistics:
## | Parameters | Degrees of Freedom | Fit (-2lnL units)
## Model: 14 10986 32383
## Saturated: NA NA NA
## Independence: NA NA NA
## Number of observations/statistics: 2000/11000
##
## Information Criteria:
## | df Penalty | Parameters Penalty | Sample-Size Adjusted
## AIC: 10411 32411 32411
## BIC: -51120 32490 32445
## CFI: NA
## TLI: 1 (also known as NNFI)
## RMSEA: 0 [95% CI (NA, NA)]
## Prob(RMSEA <= 0.05): NA
## To get additional fit indices, see help(mxRefModels)
## timestamp: 2024-03-27 14:48:49
## Wall clock time: 0.17 secs
## optimizer: SLSQP
## OpenMx version number: 2.20
## Need help? See help(mxSummary)
```
One way of assessing whether the causal path is significant is by dropping it
```r
m2 <- omxSetParameters(m1, name = "nog1", labels="g1", free = FALSE,
values = 0)
m2 <- mxRun(m2)
```
```
## Running nog1 with 13 parameters
```
```r
# Comparing the two models
mxCompare(m1, m2)
```
```
## base comparison ep minus2LL df AIC diffLL diffdf p
## 1 mrdoc1 <NA> 14 32383 10986 32411 NA NA NA
## 2 mrdoc1 nog1 13 32499 10987 32525 115 1 0.0000000000000000000000000066
```
Q1: We dropped the causal path, what is the interpretation for the above
result?
ANSWER: The causal path is significant, model m2 was worse.
Can we specify a model for a 2-stage least squares test using SEM and OpenMX?
```r
IVModel = mxModel("MR", type = "RAM", manifestVars = c("X", "Y", "I"),
latentVars = c("eX", "eY"),
# Path from instrument to exposure
mxPath(from = "I" , to = "X", arrows = 1, label = "b1"),
# Path from exposure to outcome, g1
mxPath(from = "X", to = "Y", label = "g1"),
# Latent error+ setting up variance and means for variables
mxPath(from = c("I"), arrows = 2, label = "vI"),
mxPath(from = c("eX", "eY"), to = c("X","Y"), value = 1, free = FALSE),
# Variance of residual errors
mxPath(from = c("eX", "eY"), arrows = 2, free = TRUE,
labels = c("vX", "vY")),
mxPath(connect = "unique.bivariate", from = c("eX", "eY"), arrows = 2,
values = 0.2, labels = "re"), # Correlation among residuals
mxPath("one", to = c("X","Y", "I"), labels = c("mX", "mY", "mI")))
# The above specification closely follows the slides in the presentation
# If you have umx installed you can look at it:
# library(umx)
# plot(IVModel)
```
Let's generate a new data set by taking only twin 1 from mzs and dzs
```r
dat1 <- rbind(dnpmz[,1:3],dnpdz[,1:3]) |>
# we need to rename the variables to match the dimension names set in the
# IVmodel above
rename(X = X_T1,
Y = Y_T1,
I = iX_T1)
```
Adding the data to the model
```r
unrel <- IVModel + mxData(dat1, type = "raw")
```
Know your data, check variable skewness, kurtosis and means, but
in the interest of brevity, let's autostart
```r
unrel <- mxAutoStart(unrel)
unrel <- mxRun(unrel)
```
```
## Running MR with 9 parameters
```
```r
summary(unrel)
```
```
## Summary of MR
##
## free parameters:
## name matrix row col Estimate Std.Error A
## 1 g1 A Y X 0.3159990 0.090
## 2 b1 A X I 0.3159993 0.028
## 3 vI S I I 0.9990026 0.032
## 4 vX S eX eX 1.6123920 0.051 !
## 5 re S eX eY 0.6313694 0.150
## 6 vY S eY eY 1.6123882 0.124
## 7 mX M 1 X 0.0000090 0.028 !
## 8 mY M 1 Y -0.0000113 0.028 !
## 9 mI M 1 I 0.0000033 0.022 !
##
## Model Statistics:
## | Parameters | Degrees of Freedom | Fit (-2lnL units)
## Model: 9 5991 18603
## Saturated: 9 5991 NA
## Independence: 6 5994 NA
## Number of observations/statistics: 2000/6000
##
## Information Criteria:
## | df Penalty | Parameters Penalty | Sample-Size Adjusted
## AIC: 6621 18621 18621
## BIC: -26934 18672 18643
## CFI: NA
## TLI: 1 (also known as NNFI)
## RMSEA: 0 [95% CI (NA, NA)]
## Prob(RMSEA <= 0.05): NA
## To get additional fit indices, see help(mxRefModels)
## timestamp: 2024-03-27 14:48:50
## Wall clock time: 0.038 secs
## optimizer: SLSQP
## OpenMx version number: 2.20
## Need help? See help(mxSummary)
```
```r
unrel2 <- omxSetParameters(name = "no_causal", unrel, label="g1", free = FALSE,
values = 0)
unrel2 <- mxRun(unrel2)
```
```
## Running no_causal with 8 parameters
```
```r
mxCompare(unrel,unrel2)
```
```
## base comparison ep minus2LL df AIC diffLL diffdf p
## 1 MR <NA> 9 18603 5991 18621 NA NA NA
## 2 MR no_causal 8 18612 5992 18628 9.1 1 0.0025
```
Q2: The line above is a Likelihood ratio test with 1 degree of freedom, what is
the meaning of a significant p-value in this case?
ANSWER: The causal path is significant, dropping it made the model (no_causal)
significantly worse
```r
# Now let's compare with a typical 2sls test
TSLS1=lm(X~I,data=dat1)
Xhat=predict(TSLS1)
TSLS2=lm(Y~Xhat,data=dat1)
summary(TSLS2)
```
```
##
## Call:
## lm(formula = Y ~ Xhat, data = dat1)
##
## Residuals:
## Min 1Q Median 3Q Max
## -5.477 -1.017 0.004 1.018 5.287
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.00000000000000000429 0.03297416855661412793 0.00 1.0000
## Xhat 0.31599999999999939249 0.10440084815354150338 3.03 0.0025 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.5 on 1998 degrees of freedom
## Multiple R-squared: 0.00456, Adjusted R-squared: 0.00407
## F-statistic: 9.16 on 1 and 1998 DF, p-value: 0.0025
```
```r
# In the specialized ivreg package the syntax would be:
# library(ivreg)
# TSLS2=ivreg(Y~X|I,data=dat1)
```
Q3: Check out the estimate for Xhat in the previous summary and compare
to unrel estimate. Did MR-DoC estimated same values as 2sls?
ANSWER: Yes, the estimates are equal (0.316)
Now let's check the power to reject the hypothesis of g1=0 using the
non-centrality parameter for related and unrelated individuals.
```r
lambdam1=mxCompare(m1,m2)[2,7]
dfs=mxCompare(m1,m2)[2,8]
alpha=0.05
ca=qchisq(alpha,dfs,ncp=0,lower.tail=F)
powerm1=pchisq(ca,dfs,ncp=lambdam1,lower.tail=F)
powerm1
```
```
## [1] 1
```
```r
lambdaunrel=mxCompare(unrel,unrel2)[2,7]
dfs=mxCompare(unrel,unrel2)[2,8]
alpha=0.05 # user specified: type I error prob.
ca=qchisq(alpha,dfs,ncp=0,lower.tail=F)
powerUnrel=pchisq(ca,dfs,ncp=lambdaunrel,lower.tail=F)
powerUnrel
```
```
## [1] 0.86
```
Q4: Which method had better power to detect the causal effect?
ANSWER: MR-DoC has a power of 0.99, 2sls has a power of 0.86
Scenario 2: Pleiotropy -------------------------------------------------
Next consider the scenario with pleiotropy, assume re=0 and test g1 = 0
Check the results: does MR-DoC model recover correctly the parameters b2, g1,
and b1.
Do we detect a causal effect if we don't account for pleiotropy
(SEM, 2stage least squares, 2-sample MR)?
```r
sim_data2 <- mrdoc1 |>
omxSetParameters(labels = c("g1","b1", "b2",
"ax2", "ay2", "cx2", "cy2", "ex2", "ey2",
"covA", "covC", "covE","sigma_x"),
values = c(0.143, 0.316, 0.127,
0.424, 0.67, 0.670, 0.424, 0.519, 0.519,
0.411,0.221,0, 1)) |>
mxGenerateData( nrows = 1000, empirical = TRUE)
sim_data2$MZ <- mutate(sim_data2$MZ, iX_T2 = iX_T1)
dwpmz <- sim_data2$MZ
dwpdz <- sim_data2$DZ
dim(dwpdz) #
```
```
## [1] 1000 6
```
```r
head(dwpdz)
```
```
## X_T1 Y_T1 iX_T1 X_T2 Y_T2 iX_T2
## 1 -0.035 -0.27 1.03 -1.1 1.461 1.16
## 2 0.481 1.56 1.29 1.5 0.156 2.26
## 3 -1.018 -1.55 -0.65 -1.4 0.011 -0.76
## 4 1.193 -0.93 -0.64 2.0 -0.079 0.68
## 5 1.600 2.11 0.62 -1.3 -0.314 1.37
## 6 0.050 -0.89 -0.50 1.4 0.766 0.80
```
```r
summary(dwpdz)
```
```
## X_T1 Y_T1 iX_T1 X_T2 Y_T2 iX_T2
## Min. :-3.9 Min. :-4.2 Min. :-3.06 Min. :-4.1 Min. :-4.2 Min. :-3.01
## 1st Qu.:-0.9 1st Qu.:-0.9 1st Qu.:-0.68 1st Qu.:-0.9 1st Qu.:-0.9 1st Qu.:-0.66
## Median : 0.0 Median : 0.0 Median : 0.00 Median : 0.0 Median : 0.0 Median :-0.05
## Mean : 0.0 Mean : 0.0 Mean : 0.00 Mean : 0.0 Mean : 0.0 Mean : 0.00
## 3rd Qu.: 0.9 3rd Qu.: 1.0 3rd Qu.: 0.69 3rd Qu.: 0.9 3rd Qu.: 0.9 3rd Qu.: 0.68
## Max. : 4.4 Max. : 4.3 Max. : 2.92 Max. : 3.8 Max. : 4.1 Max. : 2.96
```
```r
dim(dwpmz) #
```
```
## [1] 1000 6
```
```r
head(dwpmz)
```
```
## X_T1 Y_T1 iX_T1 X_T2 Y_T2 iX_T2
## 1 -0.89 -1.5548 -0.490 -0.1428 -3.586 -0.490
## 2 -0.14 1.3320 -0.553 0.7621 0.332 -0.553
## 3 -1.22 -0.0653 -0.034 -0.0076 1.245 -0.034
## 4 0.72 -0.0053 0.166 1.6579 0.067 0.166
## 5 -0.92 -0.8504 0.171 -1.3165 -1.570 0.171
## 6 -1.78 0.9096 -1.363 -2.7041 -1.469 -1.363
```
```r
summary(dwpmz)
```
```
## X_T1 Y_T1 iX_T1 X_T2 Y_T2 iX_T2
## Min. :-3.7 Min. :-4.6 Min. :-3.0 Min. :-4.0 Min. :-4.1 Min. :-3.0
## 1st Qu.:-0.9 1st Qu.:-1.0 1st Qu.:-0.6 1st Qu.:-0.9 1st Qu.:-1.0 1st Qu.:-0.6
## Median :-0.1 Median : 0.0 Median : 0.0 Median : 0.0 Median : 0.0 Median : 0.0
## Mean : 0.0 Mean : 0.0 Mean : 0.0 Mean : 0.0 Mean : 0.0 Mean : 0.0
## 3rd Qu.: 0.9 3rd Qu.: 0.9 3rd Qu.: 0.6 3rd Qu.: 0.9 3rd Qu.: 0.9 3rd Qu.: 0.6
## Max. : 4.6 Max. : 4.4 Max. : 3.7 Max. : 4.7 Max. : 4.2 Max. : 3.7
```
```r
pleio = mrdoc1
pleio$MZ <- mrdoc1$MZ + mxData(dwpmz, type = "raw")
pleio$DZ <- mrdoc1$DZ + mxData(dwpdz, type = "raw")
pleio <- mxRun(pleio)
```
```
## Running mrdoc1 with 15 parameters
```
```r
summary(pleio)
```
```
## Summary of mrdoc1
##
## free parameters:
## name matrix row col Estimate Std.Error A
## 1 g1 top.BE Y X 0.14300289 0.031
## 2 b1 top.BE X iX 0.31599910 0.022
## 3 b2 top.BE Y iX 0.12700095 0.025
## 4 ax2 top.A X X 0.42359100 0.077 !
## 5 covA top.A X Y 0.41058422 0.067 !
## 6 ay2 top.A Y Y 0.66931525 0.090 !
## 7 sigma_x top.A iX iX 0.99900149 0.026
## 8 cx2 top.C X X 0.66932329 0.074 !
## 9 covC top.C X Y 0.22077728 0.054 !
## 10 cy2 top.C Y Y 0.42358333 0.080 !
## 11 ex2 top.E X X 0.51847605 0.023
## 12 ey2 top.E Y Y 0.51848682 0.023 !
## 13 mX1 top.mean_dz 1 X_T1 0.00000085 0.026
## 14 mY2 top.mean_dz 1 Y_T1 -0.00000048 0.027
## 15 miX1 top.mean_dz 1 iX_T1 -0.00000751 0.021 !
##
## Model Statistics:
## | Parameters | Degrees of Freedom | Fit (-2lnL units)
## Model: 15 10985 32379
## Saturated: NA NA NA
## Independence: NA NA NA
## Number of observations/statistics: 2000/11000
##
## Information Criteria:
## | df Penalty | Parameters Penalty | Sample-Size Adjusted
## AIC: 10409 32409 32409
## BIC: -51117 32493 32445
## CFI: NA
## TLI: 1 (also known as NNFI)
## RMSEA: 0 [95% CI (NA, NA)]
## Prob(RMSEA <= 0.05): NA
## To get additional fit indices, see help(mxRefModels)
## timestamp: 2024-03-27 14:48:51
## Wall clock time: 0.14 secs
## optimizer: SLSQP
## OpenMx version number: 2.20
## Need help? See help(mxSummary)
```
parameters used for simulation
g1 = 0.143
b1 = 0.316
b2 = 0.127
Q5: check the results: does MR-DoC model recover correctly the parameters b2,
g1, and b1? Hint: look at the true values used for simulation
ANSWER: Yes.
MR-DoC: Test g1=0 using a likelihood ratio test #########
```r
pleio2 <- omxSetParameters(name = "no_causal", pleio, label="g1", free = FALSE,
values = 0)
pleio2 <- mxRun(pleio2)
```
```
## Running no_causal with 14 parameters
```
```r
mxCompare(pleio, pleio2)
```
```
## base comparison ep minus2LL df AIC diffLL diffdf p
## 1 mrdoc1 <NA> 15 32379 10985 32409 NA NA NA
## 2 mrdoc1 no_causal 14 32400 10986 32428 21 1 0.0000043
```
Let's run in unrelateds: ---------------------------------------------------
```r
# take twin 1 from mz and dz
dat2 <- rbind(dwpmz[,1:3],dwpdz[,1:3])|>
rename(X = X_T1,
Y = Y_T1,
I = iX_T1)
unrel3 <- IVModel + mxData(dat2, type = "raw")
# in the interest of brevity, let's autostart the model
unrel3 <- mxAutoStart(unrel3)
unrel3 <- mxRun(unrel3)
```
```
## Running MR with 9 parameters
```
```r
summary(unrel3)
```
```
## Summary of MR
##
## free parameters:
## name matrix row col Estimate Std.Error A
## 1 g1 A Y X 0.54484392 0.083 !
## 2 b1 A X I 0.31600496 0.028 !
## 3 vI S I I 0.99903761 0.032 !
## 4 vX S eX eX 1.61131910 0.051 !
## 5 re S eX eY -0.01613821 0.137 !
## 6 vY S eY eY 1.36412244 0.043 !
## 7 mX M 1 X -0.00000021 0.028
## 8 mY M 1 Y -0.00000017 0.026
## 9 mI M 1 I 0.00000305 0.022 !
##
## Model Statistics:
## | Parameters | Degrees of Freedom | Fit (-2lnL units)
## Model: 9 5991 18600
## Saturated: 9 5991 NA
## Independence: 6 5994 NA
## Number of observations/statistics: 2000/6000
##
## Information Criteria:
## | df Penalty | Parameters Penalty | Sample-Size Adjusted
## AIC: 6618 18618 18618
## BIC: -26937 18669 18640
## CFI: NA
## TLI: 1 (also known as NNFI)
## RMSEA: 0 [95% CI (NA, NA)]
## Prob(RMSEA <= 0.05): NA
## To get additional fit indices, see help(mxRefModels)
## timestamp: 2024-03-27 14:48:52
## Wall clock time: 0.053 secs
## optimizer: SLSQP
## OpenMx version number: 2.20
## Need help? See help(mxSummary)
```
parameters used for simulation
g1 = 0.143
b1 = 0.316
b2 = 0.127
Q6: Does the 2sls model recover correctly the parameters used for simulation?
ANSWER: No, it overestimated g1
```r
unrel4 <- omxSetParameters(name = "no_causal", unrel3, label="g1", free = FALSE,
values = 0)
unrel4 <- mxRun(unrel4)
```
```
## Running no_causal with 8 parameters
```
```r
mxCompare(unrel3,unrel4)
```
```
## base comparison ep minus2LL df AIC diffLL diffdf p
## 1 MR <NA> 9 18600 5991 18618 NA NA NA
## 2 MR no_causal 8 18633 5992 18649 32 1 0.000000014
```
```r
## Which model has highest power? (look at chisq difference) -----------------
## MR-DoC in Twins
chisq_Twins=mxCompare(pleio,pleio2)[2,7]
chisq_Twins
```
```
## [1] 21
```
```r
## MR-SEM in unrelateds
chisq_Unrel=mxCompare(unrel3, unrel4)[2,7]
chisq_Unrel
```
```
## [1] 32
```
Q7: Conclusion? Larger diff, higher power
ANSWER: Power in the model with unrelated was higher.
```r
## Fit the model using two stage least squares ####################
TSLS1=lm(X~I,data=dat2)
Xhat=predict(TSLS1)
TSLS2=lm(Y~Xhat,data=dat2)
summary(TSLS2)
```
```
##
## Call:
## lm(formula = Y ~ Xhat, data = dat2)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.622 -0.922 -0.037 0.920 4.710
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.0000000000000000135 0.0302219807176829502 0.00 1
## Xhat 0.5448987341772134618 0.0956870349706873818 5.69 0.000000014 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.4 on 1998 degrees of freedom
## Multiple R-squared: 0.016, Adjusted R-squared: 0.0155
## F-statistic: 32.4 on 1 and 1998 DF, p-value: 0.0000000142
```
Check above that the 2sls test using either glm or SEM still finds
same estimates.
Q8: Do we detect a causal effect if we account for pleiotropy (SEM, 2stage
least squares)?
ANSWER: The models using unrelated detects a causal effect but not
accounting for pleiotropy the estimate was biased.
Scenario 3. Bidirectional causation -------------------------------------------
Specifying the mrdoc2 model. This is similar to mrdoc1 except
larger matrices (one more instrument)
Matrix for causal paths
```r
BE <- mxMatrix(name = "BE", type = "Full",nrow=4, ncol = 4,byrow = TRUE,
labels = c(NA, "g2", "b1", "b4",
"g1", NA, "b2", "b3",
NA, NA, NA, NA,
NA, NA, NA, NA),
free = c(FALSE, TRUE, TRUE, FALSE,
TRUE, FALSE, FALSE, TRUE,
FALSE, FALSE, FALSE, FALSE,
FALSE, FALSE, FALSE, FALSE),
dimnames = list(c("X", "Y", "iX", "iY"),
c("X", "Y", "iX", "iY")))
```
A, C and E decomposition
```r
A <- mxMatrix(name = 'A', type='Symm', nrow=4, ncol = 4,byrow = TRUE,
labels=c("ax2","covA",NA,NA,
"covA","ay2",NA,NA,
NA,NA,"x2" ,"rf",
NA,NA,"rf","y2"),
free=c(TRUE,TRUE,FALSE,FALSE,
TRUE,TRUE,FALSE,FALSE,
FALSE,FALSE,TRUE,TRUE,
FALSE,FALSE,TRUE,TRUE),
dimnames = list(c("X", "Y", "iX", "iY"),
c("X", "Y", "iX", "iY")))
C <- mxMatrix(name = 'C', type='Symm',nrow=4, ncol = 4,byrow = TRUE,
labels =c("cx2", "covC",NA,NA,
"covC","cy2" ,NA,NA,
NA, NA, NA,NA,
NA, NA, NA,NA),
free=c(TRUE,TRUE, FALSE,FALSE,
TRUE,TRUE, FALSE,FALSE,
FALSE,FALSE,FALSE,FALSE,
FALSE,FALSE,FALSE,FALSE),
dimnames = list(c("X", "Y", "iX", "iY"),
c("X", "Y", "iX", "iY")))
E <- mxMatrix(name = 'E', type='Symm', nrow=4, ncol = 4,byrow = TRUE,
labels =c("ex2", "covE",NA,NA,
"covE","ey2" ,NA,NA,
NA, NA, NA,NA,
NA, NA, NA,NA),
free= c(TRUE,TRUE, FALSE,FALSE,
TRUE,TRUE, FALSE,FALSE,
FALSE,FALSE,FALSE,FALSE,
FALSE,FALSE,FALSE,FALSE),
dimnames = list(c("X", "Y", "iX", "iY"),
c("X", "Y", "iX", "iY")))
```
A filter matrix, as we need to remove the PRSs from twin 2
```r
filter <- mxMatrix(name = 'filter', type='Full', nrow=6, ncol=8, free=FALSE,
byrow = TRUE,
values=c(1,0,0,0,0,0,0,0,
0,1,0,0,0,0,0,0,
0,0,1,0,0,0,0,0,
0,0,0,1,0,0,0,0,
0,0,0,0,1,0,0,0,
0,0,0,0,0,1,0,0),
dimnames = list(c("X_T1", "Y_T1", "iX_T1","iY_T1",
"X_T2", "Y_T2"),
c("X_T1", "Y_T1", "iX_T1","iY_T1","X_T2",
"Y_T2", "iX_T2","iY_T2")))
LY <- mxMatrix(name = 'LY', type='Full',nrow=4, ncol = 4, free = FALSE,
values = diag(4), labels = NA,
dimnames = list(c("X", "Y", "iX", "iY"),
c("X", "Y", "iX", "iY")))
```
The object with the means
```r
mean_dz <- mxMatrix(name = 'mean_dz', type='Full', nrow=1, ncol=8, free=TRUE,
byrow = TRUE, values = 0, labels=c('mX1','mY2','miX1','miY2',
'mX1','mY2','miX1','miY2') )
```
Removing the PRS from the MZ means
```r
algebras <- list( mxAlgebra('mean_mz', expression = mean_dz %*% t(filter)),
# Identity matrix to algebra calculations
mxMatrix(name = 'I', type='Iden', nrow= 4,ncol= 4 ),
# The needed matrices for calculating the variances
mxAlgebra('A_' , expression = LY %&% solve(I - BE) %&% A),
mxAlgebra('C_' , expression = LY %&%solve(I - BE) %&% C),
mxAlgebra('E_' , expression = LY %&%solve(I - BE) %&% E),
mxAlgebra('full_variance' , expression= A_ + C_ + E_),
mxAlgebra('variance_mz_', expression=rbind(
cbind(full_variance, A_ + C_),
cbind(A_ + C_, full_variance))),
mxAlgebra('variance_dz', expression=rbind(
cbind(full_variance, 0.5%x%A_ + C_),
cbind(0.5%x%A_ + C_, full_variance))),
mxAlgebra('variance_mz', expression= filter%&%variance_mz_))
top_mr2 <- mxModel("top", BE, A, C, E, filter, LY, mean_dz, algebras)
```
Preparing the objects for the multiple groups (MZ, DZ) analysis
```r
MZ_mr2 = mxModel("MZ", mxFitFunctionML(),
mxExpectationNormal(covariance = "top.variance_mz",means = "top.mean_mz",
dimnames = c("X_T1", "Y_T1", "iX_T1", "iY_T1",
"X_T2", "Y_T2")))
DZ_mr2 = mxModel("DZ", mxFitFunctionML(),
mxExpectationNormal(covariance = "top.variance_dz", means = "top.mean_dz",
dimnames = c("X_T1", "Y_T1", "iX_T1", "iY_T1",
"X_T2", "Y_T2", "iX_T2", "iY_T2")))
```
Combining objects to generate the final model
```r
mrdoc2 = mxModel("mrdoc2", top_mr2, MZ_mr2, DZ_mr2,
mxFitFunctionMultigroup(c("MZ","DZ") ) )
```
Simulating using mrdoc2, now we are simulating data so that there is an
effect of X on Y and vice-versa. g1, g2 !=0
```r
sim_data3 <- mrdoc2 |>
omxSetParameters(labels = c("g1","g2", "b1", "b3",
"ax2", "ay2", "cx2", "cy2", "ex2", "ey2",
"covA", "covC", "covE","rf", "x2", "y2"),
values = c(0.184, 0.111, 0.411, 0.519,
0.424, 0.670, 0.670, 0.424, 0.519, 0.519,
0.411,0.221,0.221,0.111, 1,1)) |>
mxGenerateData( nrows = 1000, empirical = TRUE)
```
Remember, we need to duplicate the columns for the second twin
```r
sim_data3$MZ <- mutate(sim_data3$MZ, iX_T2 = iX_T1, iY_T2 = iY_T1)
dg2mz <- sim_data3$MZ
dg2dz <- sim_data3$DZ
dim(dg2dz) #
```
```
## [1] 1000 8
```
```r
head(dg2dz)
```
```
## X_T1 Y_T1 iX_T1 iY_T1 X_T2 Y_T2 iX_T2 iY_T2
## 1 1.09 0.83 0.49 -0.84 2.06 1.510 0.51 -1.2
## 2 0.75 -0.86 1.13 -1.56 -0.40 -1.701 -0.11 -1.6
## 3 1.24 1.41 -0.85 -0.65 -2.17 1.506 -1.24 1.1
## 4 2.16 2.24 -1.12 0.26 1.53 1.849 -0.55 1.2
## 5 0.29 0.40 -0.45 0.68 -0.65 0.032 -1.81 1.0
## 6 2.65 2.96 -0.69 -0.67 2.66 1.472 0.78 -1.6
```
```r
summary(dg2dz)
```
```
## X_T1 Y_T1 iX_T1 iY_T1 X_T2 Y_T2 iX_T2
## Min. :-5.6 Min. :-5.0 Min. :-3.5 Min. :-2.8 Min. :-5.0 Min. :-4.5 Min. :-2.9
## 1st Qu.:-1.0 1st Qu.:-1.0 1st Qu.:-0.6 1st Qu.:-0.7 1st Qu.:-1.0 1st Qu.:-1.1 1st Qu.:-0.7
## Median : 0.0 Median :-0.1 Median : 0.0 Median : 0.0 Median : 0.0 Median : 0.0 Median : 0.0
## Mean : 0.0 Mean : 0.0 Mean : 0.0 Mean : 0.0 Mean : 0.0 Mean : 0.0 Mean : 0.0
## 3rd Qu.: 1.0 3rd Qu.: 1.1 3rd Qu.: 0.7 3rd Qu.: 0.6 3rd Qu.: 0.9 3rd Qu.: 1.1 3rd Qu.: 0.7
## Max. : 4.3 Max. : 4.5 Max. : 3.0 Max. : 3.4 Max. : 4.7 Max. : 4.5 Max. : 3.2
## iY_T2
## Min. :-3.12
## 1st Qu.:-0.64
## Median : 0.00
## Mean : 0.00
## 3rd Qu.: 0.67
## Max. : 3.08
```
```r
dim(dg2mz) #
```
```
## [1] 1000 8
```
```r
head(dg2mz)
```
```
## X_T1 Y_T1 iX_T1 iY_T1 X_T2 Y_T2 iX_T2 iY_T2
## 1 1.59 1.517 -0.498 0.330 2.19 1.234 -0.498 0.330
## 2 0.40 -0.608 -0.982 -0.358 0.71 -0.108 -0.982 -0.358
## 3 -0.39 -1.330 0.519 -0.828 -2.66 -3.425 0.519 -0.828
## 4 1.14 0.557 0.686 0.709 -0.17 0.517 0.686 0.709
## 5 0.60 0.081 2.273 -0.552 0.37 0.406 2.273 -0.552
## 6 -0.28 -1.163 0.085 0.033 0.17 -0.097 0.085 0.033
```
```r
summary(dg2mz)
```
```
## X_T1 Y_T1 iX_T1 iY_T1 X_T2 Y_T2 iX_T2
## Min. :-4.9 Min. :-5.3 Min. :-2.72 Min. :-4.0 Min. :-4.6 Min. :-5.2 Min. :-2.72
## 1st Qu.:-0.9 1st Qu.:-1.1 1st Qu.:-0.72 1st Qu.:-0.6 1st Qu.:-0.9 1st Qu.:-1.1 1st Qu.:-0.72
## Median : 0.0 Median : 0.0 Median :-0.04 Median : 0.0 Median : 0.0 Median : 0.0 Median :-0.04
## Mean : 0.0 Mean : 0.0 Mean : 0.00 Mean : 0.0 Mean : 0.0 Mean : 0.0 Mean : 0.00
## 3rd Qu.: 1.0 3rd Qu.: 1.0 3rd Qu.: 0.70 3rd Qu.: 0.7 3rd Qu.: 1.0 3rd Qu.: 1.0 3rd Qu.: 0.70
## Max. : 5.3 Max. : 5.0 Max. : 2.97 Max. : 2.9 Max. : 5.6 Max. : 4.3 Max. : 2.97
## iY_T2
## Min. :-4.0
## 1st Qu.:-0.6
## Median : 0.0
## Mean : 0.0
## 3rd Qu.: 0.7
## Max. : 2.9
```
```r
bidir <- mrdoc2
bidir$MZ <- bidir$MZ + mxData(dg2mz, type = "raw")
bidir$DZ <- bidir$DZ + mxData(dg2dz, type = "raw")
bidir <- mxAutoStart(bidir)
bidir <- mxRun(bidir)
```
```
## Running mrdoc2 with 20 parameters
```
You can check for local identification: (this is slow, do this at home)
mxCheckIdentification(bidir)$status
```r
summary(bidir)
```
```
## Summary of mrdoc2
##
## free parameters:
## name matrix row col Estimate Std.Error A
## 1 g1 top.BE Y X 0.18404298 0.054 !
## 2 g2 top.BE X Y 0.11099381 0.042 !
## 3 b1 top.BE X iX 0.41099670 0.023 !
## 4 b3 top.BE Y iY 0.51899828 0.023 !
## 5 ax2 top.A X X 0.42357732 0.088 !
## 6 covA top.A X Y 0.41058220 0.076 !
## 7 ay2 top.A Y Y 0.66934882 0.101 !
## 8 x2 top.A iX iX 0.99894780 0.026 !
## 9 rf top.A iX iY 0.11087160 0.018 !
## 10 y2 top.A iY iY 0.99894780 0.026 !
## 11 cx2 top.C X X 0.66931127 0.080 !
## 12 covC top.C X Y 0.22074242 0.074 !
## 13 cy2 top.C Y Y 0.42355736 0.085 !
## 14 ex2 top.E X X 0.51847349 0.036 !
## 15 covE top.E X Y 0.22076944 0.041
## 16 ey2 top.E Y Y 0.51848643 0.038 !
## 17 mX1 top.mean_dz 1 X_T1 -0.00000019 0.029
## 18 mY2 top.mean_dz 1 Y_T1 0.00000018 0.031
## 19 miX1 top.mean_dz 1 iX_T1 0.00000012 0.021
## 20 miY2 top.mean_dz 1 iY_T1 -0.00000015 0.021
##
## Model Statistics:
## | Parameters | Degrees of Freedom | Fit (-2lnL units)
## Model: 20 13980 40029
## Saturated: NA NA NA
## Independence: NA NA NA
## Number of observations/statistics: 2000/14000
##
## Information Criteria:
## | df Penalty | Parameters Penalty | Sample-Size Adjusted
## AIC: 12069 40069 40070
## BIC: -66231 40181 40118
## CFI: NA
## TLI: 1 (also known as NNFI)
## RMSEA: 0 [95% CI (NA, NA)]
## Prob(RMSEA <= 0.05): NA
## To get additional fit indices, see help(mxRefModels)
## timestamp: 2024-03-27 14:48:53
## Wall clock time: 0.15 secs
## optimizer: SLSQP
## OpenMx version number: 2.20
## Need help? See help(mxSummary)
```
simulated parameters
g1 = 0.184
g2 = 0.111
b1 = 0.411
b3 = 0.519
Q9: Check the results: does MR-DoC model recover correctly the parameters
g1, g2, b1, and b3
ANSWER: Yes, the estimates matches the true values set for the data.
MR-DoC: Test g1=0 using a likelihood ratio test
```r
bidir2 <- omxSetParameters(name = "drop_g1g2", bidir, label=c("g1", "g2"),
free = FALSE, values = 0)
bidir2 <- mxRun(bidir2)
```
```
## Running drop_g1g2 with 18 parameters
```
```r
mxCompare(bidir, bidir2)
```
```
## base comparison ep minus2LL df AIC diffLL diffdf p
## 1 mrdoc2 <NA> 20 40029 13980 40069 NA NA NA
## 2 mrdoc2 drop_g1g2 18 40045 13982 40081 16 2 0.00032
```
Q10: How many degrees of freedom for this LRT?
ANSWER: Two degrees of freedom, we dropped both g1 and g2.
Q11: Are the causal paths significant?
ANSWER: Dropping g1 and g2 resulted in a significantly worse model, therefore
the bidirectional relationship is significant.
```r
## Let's run in unrelateds X -> Y: ---------------------------------------------
```
We are proceeding to check if running 2sls in each direction matches the true
values we set in the simulation. Remember the model includes indirect
pleiotropy of type PS2 -> rf -> PS1 -> X
```r
# take twin 1 from mz and dz
dat4=rbind(dg2mz[,1:4],dg2dz[,1:4]) |>
rename(X = X_T1,
Y = Y_T1,
I = iX_T1)
unrel7 <- IVModel + mxData(dat4, type = "raw")
# in the interest of brevity, let's autostart the model
unrel7 <- mxAutoStart(unrel7)
unrel7 <- mxRun(unrel7)
```
```
## Running MR with 9 parameters
```
```r
summary(unrel7)
```
```
## Summary of MR
##
## free parameters:
## name matrix row col Estimate Std.Error A
## 1 g1 A Y X 0.31920390 0.067
## 2 b1 A X I 0.42609788 0.031
## 3 vI S I I 0.99899914 0.032
## 4 vX S eX eX 1.90053222 0.060
## 5 re S eX eY 0.82566402 0.134
## 6 vY S eY eY 1.61915635 0.122
## 7 mX M 1 X -0.00000031 0.031
## 8 mY M 1 Y -0.00000026 0.028
## 9 mI M 1 I -0.00000001 0.022
##
## Model Statistics:
## | Parameters | Degrees of Freedom | Fit (-2lnL units)
## Model: 9 5991 18772
## Saturated: 9 5991 NA
## Independence: 6 5994 NA
## Number of observations/statistics: 2000/6000
##
## Information Criteria:
## | df Penalty | Parameters Penalty | Sample-Size Adjusted
## AIC: 6790 18790 18791
## BIC: -26765 18841 18812
## CFI: NA
## TLI: 1 (also known as NNFI)
## RMSEA: 0 [95% CI (NA, NA)]
## Prob(RMSEA <= 0.05): NA
## To get additional fit indices, see help(mxRefModels)
## timestamp: 2024-03-27 14:48:54
## Wall clock time: 0.039 secs
## optimizer: SLSQP
## OpenMx version number: 2.20
## Need help? See help(mxSummary)
```
```r
## Let's run in unrelateds Y -> X: ---------------------------------------------
# take twin 1 from mz and dz
dat5=rbind(dg2mz[,1:4],dg2dz[,1:4]) |>
rename(Y = X_T1, # notice the inversion here
X = Y_T1, # notice the inversion here
I = iY_T1)
```
The inversion above is only necessary so we don't have to rewrite the model
from scratch.
Bear with me as I rename the parameters in the base model
This will help interpreting results
```r
IVModelYX = omxSetParameters(name = "IVModelYX", IVModel, label = c("g1","b1", "vX", "vY", "mX", "mY"),
newlabel = c("g2","b3", "vY", "vX", "mY", "mX"))
unrel8 <- IVModelYX + mxData(dat5, type = "raw")
# in the interest of brevity, let's autostart the model
unrel8 <- mxAutoStart(unrel8)
unrel8 <- mxRun(unrel8)
```
```
## Running IVModelYX with 9 parameters
```
```r
summary(unrel8)
```
```
## Summary of IVModelYX
##
## free parameters:
## name matrix row col Estimate Std.Error A
## 1 g2 A Y X 0.1957359896 0.052
## 2 b3 A X I 0.5383903493 0.032
## 3 vI S I I 0.9990000291 0.032
## 4 vY S eX eX 2.0688193334 0.065
## 5 re S eX eY 1.0285950507 0.118
## 6 vX S eY eY 1.5888873870 0.119
## 7 mY M 1 X 0.0000005475 0.032
## 8 mX M 1 Y 0.0000004254 0.028
## 9 mI M 1 I 0.0000000055 0.022
##
## Model Statistics:
## | Parameters | Degrees of Freedom | Fit (-2lnL units)
## Model: 9 5991 18628
## Saturated: 9 5991 NA
## Independence: 6 5994 NA
## Number of observations/statistics: 2000/6000
##
## Information Criteria:
## | df Penalty | Parameters Penalty | Sample-Size Adjusted
## AIC: 6646 18646 18647
## BIC: -26909 18697 18668
## CFI: NA
## TLI: 1 (also known as NNFI)
## RMSEA: 0 [95% CI (NA, NA)]
## Prob(RMSEA <= 0.05): NA
## To get additional fit indices, see help(mxRefModels)
## timestamp: 2024-03-27 14:48:54
## Wall clock time: 0.04 secs
## optimizer: SLSQP
## OpenMx version number: 2.20
## Need help? See help(mxSummary)
```
The result of the summary immediately above is of the relationship of
Y to X, in other words g2.
simulated parameters
g1 = 0.184
g2 = 0.111
b1 = 0.411
b3 = 0.519
Q12: Does MR-SEM models (unrel7 or X->Y, and model unrel8 Y <- X) recover correctly the parameters used for simulation?
What happened to the estimates?
ANSWER: Both g1 and g2 were overestimated in the 2sls solution.
Scenario 4: Pleiotropy & no causal effect STRETCH GOAL! -------------------
We are back to MR-DoC1 and we will be simulating data without
the causal effect
Compare the results obtained with MR-DoC, unrelateds SEM, 2SLS, 2-sample MR.
```r
sim_data4 <- mrdoc1 |>
omxSetParameters(labels = c("g1","b1", "b2",
"ax2", "ay2", "cx2", "cy2", "ex2", "ey2",
"covA", "covC", "covE","sigma_x"),
values = c(0, 0.316, 0.316,
0.424, 0.670, 0.670, 0.424, 0.519, 0.519,
0.411,0.221,0, 1)) |>
mxGenerateData( nrows = 1000, empirical = TRUE)
sim_data4$MZ <- mutate(sim_data4$MZ, iX_T2 = iX_T1)
dg1mz <- sim_data4$MZ
dg1dz <- sim_data4$DZ
dim(dg1dz) #
```
```
## [1] 1000 6
```
```r
head(dg1dz)
```
```
## X_T1 Y_T1 iX_T1 X_T2 Y_T2 iX_T2
## 1 1.4663 3.46 -0.58 0.94 1.08 -0.34
## 2 1.1069 0.95 -0.82 0.27 -0.72 -0.30
## 3 0.0035 -0.99 -1.19 0.13 -0.92 -0.77
## 4 1.2180 2.96 2.56 0.69 -0.87 -0.13
## 5 0.2032 1.14 -0.32 1.35 0.17 -0.18
## 6 -0.5218 -0.32 0.42 -1.66 -0.60 -1.00
```
```r
summary(dg1dz)
```
```
## X_T1 Y_T1 iX_T1 X_T2 Y_T2 iX_T2
## Min. :-4.4 Min. :-3.9 Min. :-3.05 Min. :-4.3 Min. :-4.1 Min. :-3.2
## 1st Qu.:-0.9 1st Qu.:-0.9 1st Qu.:-0.69 1st Qu.:-0.9 1st Qu.:-0.9 1st Qu.:-0.7
## Median : 0.0 Median : 0.0 Median : 0.03 Median : 0.0 Median : 0.0 Median : 0.0
## Mean : 0.0 Mean : 0.0 Mean : 0.00 Mean : 0.0 Mean : 0.0 Mean : 0.0
## 3rd Qu.: 0.9 3rd Qu.: 0.9 3rd Qu.: 0.68 3rd Qu.: 0.9 3rd Qu.: 0.9 3rd Qu.: 0.7
## Max. : 5.0 Max. : 3.5 Max. : 2.79 Max. : 4.0 Max. : 4.1 Max. : 3.2
```
```r
dim(dg1mz) #
```
```
## [1] 1000 6
```
```r
head(dg1mz)
```
```
## X_T1 Y_T1 iX_T1 X_T2 Y_T2 iX_T2
## 1 1.22 0.95 0.12 1.50 1.355 0.12
## 2 1.12 1.18 -0.78 0.70 0.932 -0.78
## 3 0.68 0.56 0.32 1.88 0.046 0.32
## 4 0.23 -1.34 0.50 0.45 -1.950 0.50
## 5 -0.37 -0.20 0.33 1.70 -2.129 0.33
## 6 -0.23 -1.57 1.10 -0.43 -0.576 1.10
```
```r
summary(dg1mz)
```
```
## X_T1 Y_T1 iX_T1 X_T2 Y_T2 iX_T2
## Min. :-4.5 Min. :-4.7 Min. :-3.1 Min. :-3.9 Min. :-4.4 Min. :-3.1
## 1st Qu.:-0.9 1st Qu.:-0.9 1st Qu.:-0.7 1st Qu.:-0.9 1st Qu.:-0.8 1st Qu.:-0.7
## Median : 0.1 Median : 0.0 Median : 0.0 Median : 0.0 Median : 0.0 Median : 0.0
## Mean : 0.0 Mean : 0.0 Mean : 0.0 Mean : 0.0 Mean : 0.0 Mean : 0.0
## 3rd Qu.: 0.9 3rd Qu.: 0.9 3rd Qu.: 0.7 3rd Qu.: 0.9 3rd Qu.: 0.9 3rd Qu.: 0.7
## Max. : 4.1 Max. : 4.0 Max. : 3.5 Max. : 4.6 Max. : 4.2 Max. : 3.5
```
```r
no_causal <- mrdoc1
no_causal$MZ <- mrdoc1$MZ + mxData(dg1mz, type = "raw")
no_causal$DZ <- mrdoc1$DZ + mxData(dg1dz, type = "raw")
no_causal <- mxRun(no_causal)
```
```
## Running mrdoc1 with 15 parameters
```
```r
summary(no_causal)
```
```
## Summary of mrdoc1
##
## free parameters:
## name matrix row col Estimate Std.Error A
## 1 g1 top.BE Y X -0.00000169 0.031
## 2 b1 top.BE X iX 0.31600043 0.022
## 3 b2 top.BE Y iX 0.31600035 0.025
## 4 ax2 top.A X X 0.42356291 0.077
## 5 covA top.A X Y 0.41059142 0.067
## 6 ay2 top.A Y Y 0.66932379 0.090 !
## 7 sigma_x top.A iX iX 0.99899888 0.026
## 8 cx2 top.C X X 0.66934112 0.074
## 9 covC top.C X Y 0.22078101 0.054
## 10 cy2 top.C Y Y 0.42358392 0.080
## 11 ex2 top.E X X 0.51848479 0.023
## 12 ey2 top.E Y Y 0.51848004 0.023
## 13 mX1 top.mean_dz 1 X_T1 0.00000296 0.026
## 14 mY2 top.mean_dz 1 Y_T1 0.00000083 0.026
## 15 miX1 top.mean_dz 1 iX_T1 0.00000136 0.021
##
## Model Statistics:
## | Parameters | Degrees of Freedom | Fit (-2lnL units)
## Model: 15 10985 32379
## Saturated: NA NA NA
## Independence: NA NA NA
## Number of observations/statistics: 2000/11000
##
## Information Criteria:
## | df Penalty | Parameters Penalty | Sample-Size Adjusted
## AIC: 10409 32409 32409
## BIC: -51117 32493 32445
## CFI: NA
## TLI: 1 (also known as NNFI)
## RMSEA: 0 [95% CI (NA, NA)]
## Prob(RMSEA <= 0.05): NA
## To get additional fit indices, see help(mxRefModels)
## timestamp: 2024-03-27 14:48:55
## Wall clock time: 0.15 secs
## optimizer: SLSQP
## OpenMx version number: 2.20
## Need help? See help(mxSummary)
```
Q13: Check the results: does MR-DoC model recover correctly the parameters b2,
g1, and b1?
ANSWER: Yes, it does.
```r
## MR-DoC: Test g1=0 using a likelihood ratio test #########
no_causal2 <- omxSetParameters(name = "drop_g1", no_causal, label="g1",
free = FALSE, values = 0)
no_causal2 <- mxRun(no_causal2)
```
```
## Running drop_g1 with 14 parameters
```
```r
mxCompare(no_causal, no_causal2)
```
```
## base comparison ep minus2LL df AIC diffLL diffdf p
## 1 mrdoc1 <NA> 15 32379 10985 32409 NA NA NA
## 2 mrdoc1 drop_g1 14 32379 10986 32407 -0.000000047 1 1
```
Q14: Do we detect a causal effect with a true g1 value set to zero?
ANSWER: As expected, no.
```r
## Let's run in unrelateds: ---------------------------------------------------
# take twin 1 from mz and dz
dat3 <- rbind(dg1mz[,1:3],dg1dz[,1:3])|>
rename(X = X_T1,
Y = Y_T1,
I = iX_T1)
unrel5 <- IVModel + mxData(dat3, type = "raw")
# in the interest of brevity, let's autostart the model
unrel5 <- mxAutoStart(unrel5)
unrel5 <- mxRun(unrel5)
```
```
## Running MR with 9 parameters
```
parameters used for simulation
g1 = 0
b1 = 0.316
b2 = 0.316
```r
summary(unrel5)
```
```
## Summary of MR
##
## free parameters:
## name matrix row col Estimate Std.Error A
## 1 g1 A Y X 1.0000224830708 0.099
## 2 b1 A X I 0.3160040126595 0.028 !
## 3 vI S I I 0.9990013057179 0.032
## 4 vX S eX eX 1.6114040656051 0.051 !
## 5 re S eX eY -0.9800670433984 0.166
## 6 vY S eY eY 1.9600849023070 0.204
## 7 mX M 1 X -0.0000046579304 0.028 !
## 8 mY M 1 Y -0.0000042512894 0.031 !
## 9 mI M 1 I -0.0000000000029 0.022
##
## Model Statistics:
## | Parameters | Degrees of Freedom | Fit (-2lnL units)
## Model: 9 5991 18600
## Saturated: 9 5991 NA
## Independence: 6 5994 NA
## Number of observations/statistics: 2000/6000
##
## Information Criteria:
## | df Penalty | Parameters Penalty | Sample-Size Adjusted
## AIC: 6618 18618 18618
## BIC: -26937 18669 18640
## CFI: NA
## TLI: 1 (also known as NNFI)
## RMSEA: 0 [95% CI (NA, NA)]
## Prob(RMSEA <= 0.05): NA
## To get additional fit indices, see help(mxRefModels)
## timestamp: 2024-03-27 14:48:55
## Wall clock time: 0.04 secs
## optimizer: SLSQP
## OpenMx version number: 2.20
## Need help? See help(mxSummary)
```
Q15: Does MR-SEM model recover correctly the parameters used for simulation?
ANSWER: No, g1 = 0 + pleiotropy severily biased the causal path in the models
that used unrelated data.
```r
unrel6 <- omxSetParameters(name = "no_causal", unrel5, label="g1", free = FALSE,
values = 0)
unrel6 <- mxRun(unrel6)
```
```
## Running no_causal with 8 parameters
```
```r
mxCompare(unrel5,unrel6)
```
```
## base comparison ep minus2LL df AIC diffLL diffdf p
## 1 MR <NA> 9 18600 5991 18618 NA NA NA
## 2 MR no_causal 8 18720 5992 18736 120 1 0.00000000000000000000000000059
```
```r
## Fit the model using two stage least squares ####################
TSLS1=lm(X~I,data=dat3)
Xhat=predict(TSLS1)
TSLS2=lm(Y~Xhat,data=dat3)
summary(TSLS2)
```
```
##
## Call:
## lm(formula = Y ~ Xhat, data = dat3)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.725 -0.880 0.026 0.831 3.737
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.00000000000000000517 0.02839894364232584470 0.0 1
## Xhat 1.00000000000000177636 0.08991504358428256682 11.1 <0.0000000000000002 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.3 on 1998 degrees of freedom
## Multiple R-squared: 0.0583, Adjusted R-squared: 0.0578
## F-statistic: 124 on 1 and 1998 DF, p-value: <0.0000000000000002
```
The 2sls regression again recover the same biased estimates as MR-SEM. In
the presence of pleiotropy MR-DoC outperforms the other methods.
|