1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425
|
## ----include = TRUE, tidy = TRUE, eval = FALSE, highlight = TRUE--------------
# ## write to working directory
# library(openxlsx)
# write.xlsx(iris, file = "writeXLSX1.xlsx")
# write.xlsx(iris, file = "writeXLSXTable1.xlsx", asTable = TRUE)
## ----include = TRUE, tidy = TRUE, eval = FALSE ,highlight = TRUE--------------
# ## write a list of data.frames to individual worksheets using list names as worksheet names
# l <- list("IRIS" = iris, "MTCARS" = mtcars)
# write.xlsx(l, file = "writeXLSX2.xlsx")
# write.xlsx(l, file = "writeXLSXTable2.xlsx", asTable = TRUE)
## ----include = TRUE, tidy = TRUE, eval = FALSE ,highlight= TRUE---------------
# options("openxlsx.borderColour" = "#4F80BD")
# options("openxlsx.borderStyle" = "thin")
# options("openxlsx.dateFormat" = "mm/dd/yyyy")
# options("openxlsx.datetimeFormat" = "yyyy-mm-dd hh:mm:ss")
# options("openxlsx.numFmt" = NULL) ## For default style rounding of numeric columns
#
# df <- data.frame("Date" = Sys.Date()-0:19, "LogicalT" = TRUE,
# "Time" = Sys.time()-0:19*60*60,
# "Cash" = paste("$",1:20), "Cash2" = 31:50,
# "hLink" = "https://CRAN.R-project.org/",
# "Percentage" = seq(0, 1, length.out=20),
# "TinyNumbers" = runif(20) / 1E9, stringsAsFactors = FALSE)
#
# class(df$Cash) <- "currency"
# class(df$Cash2) <- "accounting"
# class(df$hLink) <- "hyperlink"
# class(df$Percentage) <- "percentage"
# class(df$TinyNumbers) <- "scientific"
#
# write.xlsx(df, "writeXLSX3.xlsx")
# write.xlsx(df, file = "writeXLSXTable3.xlsx", asTable = TRUE)
#
#
## ----include = TRUE, tidy = TRUE, eval = FALSE, highlight= TRUE---------------
# hs <- createStyle(fontColour = "#ffffff", fgFill = "#4F80BD",
# halign = "center", valign = "center", textDecoration = "Bold",
# border = "TopBottomLeftRight", textRotation = 45)
#
# write.xlsx(iris, file = "writeXLSX4.xlsx", borders = "rows", headerStyle = hs)
# write.xlsx(iris, file = "writeXLSX5.xlsx", borders = "columns", headerStyle = hs)
#
# write.xlsx(iris, "writeXLSXTable4.xlsx", asTable = TRUE,
# headerStyle = createStyle(textRotation = 45))
## ----include = TRUE, tidy = TRUE, eval = FALSE, highlight = TRUE--------------
# l <- list("IRIS" = iris, "colClasses" = df)
# write.xlsx(l, file = "writeXLSX6.xlsx", borders = "columns", headerStyle = hs)
# write.xlsx(l, file = "writeXLSXTable5.xlsx", asTable = TRUE, tableStyle = "TableStyleLight2")
#
# openXL("writeXLSX6.xlsx")
# openXL("writeXLSXTable5.xlsx")
## ----include = TRUE, tidy = TRUE, eval = FALSE, highlight = TRUE--------------
# wb <- write.xlsx(iris, "writeXLSX6.xlsx")
# setColWidths(wb, sheet = 1, cols = 1:5, widths = 20)
# saveWorkbook(wb, "writeXLSX6.xlsx", overwrite = TRUE)
## ----include = TRUE, tidy = TRUE, eval = FALSE, highlight = TRUE--------------
# require(ggplot2)
# wb <- createWorkbook()
# options("openxlsx.borderColour" = "#4F80BD")
# options("openxlsx.borderStyle" = "thin")
# modifyBaseFont(wb, fontSize = 10, fontName = "Arial Narrow")
## ----include = TRUE,tidy = TRUE, eval = FALSE, highlight = TRUE---------------
# addWorksheet(wb, sheetName = "Motor Trend Car Road Tests", gridLines = FALSE)
# addWorksheet(wb, sheetName = "Iris", gridLines = FALSE)
## ----include = TRUE, tidy = TRUE, eval = FALSE, highlight = TRUE--------------
# freezePane(wb, sheet = 1, firstRow = TRUE, firstCol = TRUE) ## freeze first row and column
# writeDataTable(wb, sheet = 1, x = mtcars,
# colNames = TRUE, rowNames = TRUE,
# tableStyle = "TableStyleLight9")
#
# setColWidths(wb, sheet = 1, cols = "A", widths = 18)
## ----include = TRUE, tidy = TRUE, eval = FALSE, highlight = TRUE--------------
# writeDataTable(wb, sheet = 2, iris, startCol = "K", startRow = 2)
#
# qplot(data=iris, x = Sepal.Length, y= Sepal.Width, colour = Species)
# insertPlot(wb, 2, xy=c("B", 16)) ## insert plot at cell B16
#
# means <- aggregate(x = iris[,-5], by = list(iris$Species), FUN = mean)
# vars <- aggregate(x = iris[,-5], by = list(iris$Species), FUN = var)
## ----include = TRUE, tidy = TRUE, eval = FALSE, highlight = TRUE--------------
# headSty <- createStyle(fgFill="#DCE6F1", halign="center", border = "TopBottomLeftRight")
# writeData(wb, 2, x = "Iris dataset group means", startCol = 2, startRow = 2)
# writeData(wb, 2, x = means, startCol = "B", startRow=3, borders="rows", headerStyle = headSty)
## ----include = TRUE, tidy = TRUE, eval = FALSE, highlight = TRUE--------------
# writeData(wb, 2, x = "Iris dataset group variances", startCol = 2, startRow = 9)
# writeData(wb, 2, x= vars, startCol = "B", startRow=10, borders="columns",
# headerStyle = headSty)
#
# setColWidths(wb, 2, cols=2:6, widths = 12) ## width is recycled for each col
# setColWidths(wb, 2, cols=11:15, widths = 15)
## ----include = TRUE, tidy = TRUE, eval = FALSE, highlight = TRUE--------------
# s1 <- createStyle(fontSize=14, textDecoration=c("bold", "italic"))
# addStyle(wb, 2, style = s1, rows=c(2,9), cols=c(2,2))
## ----include = TRUE, tidy = TRUE, eval = FALSE, highlight = TRUE--------------
# saveWorkbook(wb, "basics.xlsx", overwrite = TRUE) ## save to working directory
## ----eval = FALSE, include = TRUE---------------------------------------------
# ## inspired by xtable gallery
# #https://CRAN.R-project.org/package=xtable/vignettes/xtableGallery.pdf
#
# ## Create a new workbook
# wb <- createWorkbook()
# data(tli, package = "xtable")
#
# ## data.frame
# test.n <- "data.frame"
# my.df <- tli[1:10, ]
# addWorksheet(wb = wb, sheetName = test.n)
# writeData(wb = wb, sheet = test.n, x = my.df, borders = "n")
#
# ## matrix
# test.n <- "matrix"
# design.matrix <- model.matrix(~ sex * grade, data = my.df)
# addWorksheet(wb = wb, sheetName = test.n)
# writeData(wb = wb, sheet = test.n, x = design.matrix)
#
# ## aov
# test.n <- "aov"
# fm1 <- aov(tlimth ~ sex + ethnicty + grade + disadvg, data = tli)
# addWorksheet(wb = wb, sheetName = test.n)
# writeData(wb = wb, sheet = test.n, x = fm1)
#
# ## lm
# test.n <- "lm"
# fm2 <- lm(tlimth ~ sex*ethnicty, data = tli)
# addWorksheet(wb = wb, sheetName = test.n)
# writeData(wb = wb, sheet = test.n, x = fm2)
#
# ## anova 1
# test.n <- "anova"
# my.anova <- anova(fm2)
# addWorksheet(wb = wb, sheetName = test.n)
# writeData(wb = wb, sheet = test.n, x = my.anova)
#
# ## anova 2
# test.n <- "anova2"
# fm2b <- lm(tlimth ~ ethnicty, data = tli)
# my.anova2 <- anova(fm2b, fm2)
# addWorksheet(wb = wb, sheetName = test.n)
# writeData(wb = wb, sheet = test.n, x = my.anova2)
#
# ## glm
# test.n <- "glm"
# fm3 <- glm(disadvg ~ ethnicty*grade, data = tli, family = binomial())
# addWorksheet(wb = wb, sheetName = test.n)
# writeData(wb = wb, sheet = test.n, x = fm3)
#
# ## prcomp
# test.n <- "prcomp"
# pr1 <- prcomp(USArrests)
# addWorksheet(wb = wb, sheetName = test.n)
# writeData(wb = wb, sheet = test.n, x = pr1)
#
# ## summary.prcomp
# test.n <- "summary.prcomp"
# addWorksheet(wb = wb, sheetName = test.n)
# writeData(wb = wb, sheet = test.n, x = summary(pr1))
#
# ## simple table
# test.n <- "table"
# data(airquality)
# airquality$OzoneG80 <- factor(airquality$Ozone > 80,
# levels = c(FALSE, TRUE),
# labels = c("Oz <= 80", "Oz > 80"))
# airquality$Month <- factor(airquality$Month,
# levels = 5:9,
# labels = month.abb[5:9])
# my.table <- with(airquality, table(OzoneG80,Month) )
# addWorksheet(wb = wb, sheetName = test.n)
# writeData(wb = wb, sheet = test.n, x = my.table)
#
# ## survdiff 1
# library(survival)
# test.n <- "survdiff1"
# addWorksheet(wb = wb, sheetName = test.n)
# x <- survdiff(Surv(futime, fustat) ~ rx, data = ovarian)
# writeData(wb = wb, sheet = test.n, x = x)
#
# ## survdiff 2
# test.n <- "survdiff2"
# addWorksheet(wb = wb, sheetName = test.n)
# expect <- survexp(futime ~ ratetable(age=(accept.dt - birth.dt),
# sex=1,year=accept.dt,race="white"), jasa, cohort=FALSE,
# ratetable=survexp.usr)
# x <- survdiff(Surv(jasa$futime, jasa$fustat) ~ offset(expect))
# writeData(wb = wb, sheet = test.n, x = x)
#
# ## coxph 1
# test.n <- "coxph1"
# addWorksheet(wb = wb, sheetName = test.n)
# bladder$rx <- factor(bladder$rx, labels = c("Pla","Thi"))
# x <- coxph(Surv(stop,event) ~ rx, data = bladder)
# writeData(wb = wb, sheet = test.n, x = x)
#
# ## coxph 2
# test.n <- "coxph2"
# addWorksheet(wb = wb, sheetName = test.n)
# x <- coxph(Surv(stop,event) ~ rx + cluster(id), data = bladder)
# writeData(wb = wb, sheet = test.n, x = x)
#
# ## cox.zph
# test.n <- "cox.zph"
# addWorksheet(wb = wb, sheetName = test.n)
# x <- cox.zph(coxph(Surv(futime, fustat) ~ age + ecog.ps, data=ovarian))
# writeData(wb = wb, sheet = test.n, x = x)
#
# ## summary.coxph 1
# test.n <- "summary.coxph1"
# addWorksheet(wb = wb, sheetName = test.n)
# x <- summary(coxph(Surv(stop,event) ~ rx, data = bladder))
# writeData(wb = wb, sheet = test.n, x = x)
#
# ## summary.coxph 2
# test.n <- "summary.coxph2"
# addWorksheet(wb = wb, sheetName = test.n)
# x <- summary(coxph(Surv(stop,event) ~ rx + cluster(id), data = bladder))
# writeData(wb = wb, sheet = test.n, x = x)
#
# ## view without saving
# openXL(wb)
#
## ----eval = FALSE, include = TRUE, tidy = TRUE, highlight= TRUE---------------
# require(ggplot2)
#
# wb <- createWorkbook()
#
# ## read historical prices from yahoo finance
# ticker <- "CBA.AX"
# csv.url <- paste0("https://query1.finance.yahoo.com/v7/finance/download/",
# ticker, "?period1=1597597610&period2=1629133610&interval=1d&events=history&includeAdjustedClose= TRue")
# prices <- read.csv(url(csv.url), as.is = TRUE)
# prices$Date <- as.Date(prices$Date)
# close <- prices$Close
# prices$logReturns = c(0, log(close[2:length(close)]/close[1:(length(close)-1)]))
#
# ## Create plot of price series and add to worksheet
# ggplot(data = prices, aes(as.Date(Date), as.numeric(Close))) +
# geom_line(colour="royalblue2") +
# labs(x = "Date", y = "Price", title = ticker) +
# geom_area(fill = "royalblue1",alpha = 0.3) +
# coord_cartesian(ylim=c(min(prices$Close)-1.5, max(prices$Close)+1.5))
#
# ## Add worksheet and write plot to sheet
# addWorksheet(wb, sheetName = "CBA")
# insertPlot(wb, sheet = 1, xy = c("J", 3))
#
# ## Histogram of log returns
# ggplot(data = prices, aes(x = logReturns)) + geom_histogram(binwidth=0.0025) +
# labs(title = "Histogram of log returns")
#
# ## currency
# class(prices$Close) <- "currency" ## styles as currency in workbook
#
# ## write historical data and histogram of returns
# writeDataTable(wb, sheet = "CBA", x = prices)
# insertPlot(wb, sheet = 1, startRow=25, startCol = "J")
#
# ## Add conditional formatting to show where logReturn > 0.01 using default style
# conditionalFormat(wb, sheet = 1, cols = seq_len((prices)), rows = 2:(nrow(prices)+1),
# rule = "$H2 > 0.01")
#
# ## style log return col as a percentage
# logRetStyle <- createStyle(numFmt = "percentage")
#
# addStyle(wb, 1, style = logRetStyle, rows = 2:(nrow(prices) + 1),
# cols = "H", gridExpand = TRUE)
#
# setColWidths(wb, sheet=1, cols = c("A", "F", "G", "H"), widths = 15)
#
# ## save workbook to working directory
# saveWorkbook(wb, "stockPrice.xlsx", overwrite = TRUE)
# openXL("stockPrice.xlsx")
## ----eval = FALSE, include = TRUE---------------------------------------------
# require(openxlsx)
# require(jpeg)
# require(ggplot2)
#
# plotFn <- function(x, ...) {
# colvec <- grey(x)
# colmat <- array(match(colvec, unique(colvec)), dim = dim(x)[1:2])
# image(x = 0:(dim(colmat)[2]), y = 0:(dim(colmat)[1]), z = t(colmat[rev(seq_len(nrow(colmat))) , ]),
# col = unique(colvec), xlab = "", ylab = "", axes = FALSE, asp = 1,
# bty ="n", frame.plot=FALSE, ann=FALSE)
# }
#
# ## Create workbook and add a worksheet, hide gridlines
# wb <- createWorkbook("Einstein")
# addWorksheet(wb, "Original Image", gridLines = FALSE)
#
# A <- readJPEG(file.path(path.package("openxlsx"), "einstein.jpg"))
# height <- nrow(A)
# width <- ncol(A)
#
# ## write "Original Image" to cell B2
# writeData(wb, 1, "Original Image", xy = c(2,2))
#
# ## write Object size to cell B3
# writeData(wb, 1, sprintf("Image object size: %s bytes",
# format(object.size(A+0)[[1]], big.mark=',')),
# xy = c(2,3)) ## equivalent to startCol = 2, startRow = 3
#
# ## Plot image
# par(mar=rep(0, 4), xpd = NA)
# plotFn(A)
#
# ## insert plot currently showing in plot window
# insertPlot(wb, 1, width, height, units="px", startRow= 5, startCol = 2)
#
# ## SVD of covariance matrix
# rMeans <- rowMeans(A)
# rowMeans <- do.call("cbind", lapply(seq_len(ncol(A)), function(X) rMeans))
# A <- A - rowMeans
# E <- svd(A %*% t(A) / (ncol(A) - 1)) # SVD on covariance matrix of A
# pve <- data.frame("Eigenvalues" = E$d,
# "PVE" = E$d/sum(E$d),
# "Cumulative PVE" = cumsum(E$d/sum(E$d)))
#
# ## write eigenvalues to worksheet
# addWorksheet(wb, "Principal Component Analysis")
# hs <- createStyle(fontColour = "#ffffff", fgFill = "#4F80BD",
# halign = "CENTER", textDecoration = "Bold",
# border = "TopBottomLeftRight", borderColour = "#4F81BD")
#
# writeData(wb, 2, x="Proportions of variance explained by Eigenvector" ,startRow = 2)
# mergeCells(wb, sheet=2, cols=1:4, rows=2)
#
# setColWidths(wb, 2, cols = 1:3, widths = c(14, 12, 15))
# writeData(wb, 2, x=pve, startRow = 3, startCol = 1, borders="rows", headerStyle=hs)
#
# ## Plots
# pve <- cbind(pve, "Ind" = seq_len(nrow(pve)))
# ggplot(data = pve[1:20,], aes(x = Ind, y = 100*PVE)) +
# geom_bar(stat="identity", position = "dodge") +
# xlab("Principal Component Index") + ylab("Proportion of Variance Explained") +
# geom_line(size = 1, col = "blue") + geom_point(size = 3, col = "blue")
#
# ## Write plot to worksheet 2
# insertPlot(wb, 2, width = 5, height = 4, startCol = "E", startRow = 2)
#
# ## Plot of cumulative explained variance
# ggplot(data = pve[1:50,], aes(x = Ind, y = 100*Cumulative.PVE)) +
# geom_point(size=2.5) + geom_line(size=1) + xlab("Number of PCs") +
# ylab("Cumulative Proportion of Variance Explained")
# insertPlot(wb, 2, width = 5, height = 4, xy= c("M", 2))
#
#
# ## Reconstruct image using increasing number of PCs
# nPCs <- c(5, 7, 12, 20, 50, 200)
# startRow <- rep(c(2, 24), each = 3)
# startCol <- rep(c("B", "H", "N"), 2)
#
# ## create a worksheet to save reconstructed images to
# addWorksheet(wb, "Reconstructed Images", zoom = 90)
#
# for(i in seq_len(length(nPCs))) {
#
# V <- E$v[, 1:nPCs[i]]
# imgHat <- t(V) %*% A ## project img data on to PCs
# imgSize <- object.size(V) + object.size(imgHat) + object.size(rMeans)
#
# imgHat <- V %*% imgHat + rowMeans ## reconstruct from PCs and add back row means
# imgHat <- round((imgHat - min(imgHat)) / (max(imgHat) - min(imgHat))*255) # scale
# plotFn(imgHat/255)
#
# ## write strings to worksheet 3
# writeData(wb, "Reconstructed Images",
# sprintf("Number of principal components used: %s",
# nPCs[[i]]), startCol[i], startRow[i])
#
# writeData(wb, "Reconstructed Images",
# sprintf("Sum of component object sizes: %s bytes",
# format(as.numeric(imgSize), big.mark=',')), startCol[i], startRow[i]+1)
#
# ## write reconstruced image
# insertPlot(wb, "Reconstructed Images", width, height, units="px",
# xy = c(startCol[i], startRow[i]+3))
#
# }
#
# # hide grid lines
# showGridLines(wb, sheet = 3, showGridLines = FALSE)
#
# ## Make text above images BOLD
# boldStyle <- createStyle(textDecoration="BOLD")
#
# ## only want to apply style to specified cells (not all combinations of rows & cols)
# addStyle(wb, "Reconstructed Images", style=boldStyle,
# rows = c(startRow, startRow+1), cols = rep(startCol, 2),
# gridExpand = FALSE)
#
# ## save workbook to working directory
# saveWorkbook(wb, "Image dimensionality reduction.xlsx", overwrite = TRUE)
#
#
#
#
# ## remove example files for cran test
# if (identical(Sys.getenv("NOT_CRAN", unset = "true"), "false")) {
# file_list<-list.files(pattern="\\.xlsx",recursive = TRUE)
# file_list<-fl[!grepl("inst/extdata",file_list)&!grepl("man/",file_list)]
#
# if(length(file_list)>0) {
# rm(file_list)
# }
# }
## ----cleanup, eval = FALSE, include = FALSE-----------------------------------
# xlsx_files <- dir(pattern = "*.xlsx")
# unlink(xlsx_files)
|