1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366
|
#' @name optimParallel
#' @aliases optimparallel optimParallel-package optimParallel-Package OptimParallel-package OptimParallel-Package optimparallel-package optimparallel-Package
#' @author Florian Gerber, \email{flora.fauna.gerber@@gmail.com}, \url{https://user.math.uzh.ch/gerber}.
#' @title parallel version of the L-BFGS-B method of \code{\link[stats]{optim}}
#' @keywords package
#' @docType package
#' @description
#' The function provides a parallel version of the L-BFGS-B method of \code{\link[stats]{optim}}.
#' If the evaluation time of the objective function \code{fn} is more than 0.1 sceconds, \code{optimParallel} can significantly reduce the optimization time.
#' For a \eqn{p}-parameter optimization the speed increase is about factor \eqn{1+2p} when no analytic gradient is specified and \eqn{1+2p} processor cores are available.
#' @param par see the documentation of \code{\link[stats]{optim}}.
#' @param fn see the documentation of \code{\link[stats]{optim}}.
#' @param gr see the documentation of \code{\link[stats]{optim}}.
#' @param ... see the documentation of \code{\link[stats]{optim}}.
#' See section 'Notes' for more information.
#' @param lower see the documentation of \code{\link[stats]{optim}}.
#' @param upper see the documentation of \code{\link[stats]{optim}}.
#' @param control see the documentation of \code{\link[stats]{optim}}.
#' @param hessian see the documentation of \code{\link[stats]{optim}}.
#' @param parallel is a list of additional control parameters and can supply any of the following components:
#' \describe{
#' \item{\code{cl}}{ an object of class \code{"cluster"} specifying the cluster to be used for parallel execution.
#' See \code{\link[parallel]{makeCluster}} for more information.
#' If the argument is not specified or \code{NULL}, the default cluster is used.
#' See \code{\link[parallel]{setDefaultCluster}} for information on how to set up a default cluster.}
#' \item{\code{forward}}{ logical vector of length 1. If \code{FALSE} (default when loading the package), a numeric central difference approximation of the gradient defined as
#' \eqn{(fn(x+\epsilon)-fn(x-\epsilon))/(2\epsilon)} is used, which corresponds to the gradient approximation used in \code{\link[stats]{optim}}.
#' If \code{TRUE}, a numeric forward difference approximation of the gradient essentially defined as
#' \eqn{(fn(x+\epsilon)-fn(x))/\epsilon} is used. This reduces the number of function calls from \eqn{1+2p} to \eqn{1+p} and can be useful if the number of available cores is smaller than \eqn{1+2p} or if the memory limit is reached. Note that the numeric central difference approximation is more accurate than the numeric forward difference approximation.}
#' \item{\code{loginfo}}{ logical vector of length 1 with default value \code{FALSE} when loading the package. If \code{TRUE},
#' additional log information containing the evaluated parameters as well as return values of \code{fn} and \code{gr} is returned.}
#' }
#'
#' @return Same as the return value of \code{\link[stats]{optim}}. See the documentation thereof for more information.\cr
#' If \code{parallel=list(loginfo=TRUE)}, additional log information containing the evaluated parameters as well as
#' the return values of \code{fn} and \code{gr} is returned.
#'
#' @details \code{optimParallel} is a wrapper to \code{\link[stats]{optim}} and relies on the lexical scoping mechanism of R
#' and the R package \pkg{parallel} to evaluate \code{fn}
#' and its (approximate) gradient in parallel.\cr\cr
#' Some default values of the argument \code{parallel} can be set via\cr\code{options("optimParallel.forward", "optimParallel.loginfo")}.
#'
#' @references F. Gerber, R. Furrer (2019)
#' optimParallel: An R package providing a parallel version of the L-BFGS-B optimization method.
#' The R Journal, 11(1):352-358, https://doi.org/10.32614/RJ-2019-030
#' Also available as vignette of this package \code{vignette("optimParallel")}.
#'
#' @section Notes:
#' \describe{
#' \item{1.}{If \code{fn} or \code{gr} depend on functions or methods from loaded packages,
#' it may be necessary to explicitly load those packages in all processes of the cluster.
#' For \code{cl} of class \code{"cluster"} one can use \code{clusterEvalQ(cl, search())} to check
#' whether all required packages are on the search paths of all processes.
#' If, for example, the R package \pkg{spam} is required and missing on those search paths,
#' it can be added via \code{clusterEvalQ(cl, library("spam"))}.}
#' \item{2.}{If \code{fn} or \code{gr} have more than one argument,
#' it may be necessary to pass those to \code{optimParallel} via the \code{...} argument.
#' An illustration is given in the section 'Examples'. }
#' \item{3.}{We recommend that all R objects used by \code{fn} and/or \code{gr} are passed to \code{fn} and/or \code{gr} via arguments.
#' In certain cases it may also work that \code{fn} and/or \code{gr} use objects from the \code{.GlobalEnv} (without having corresponding arguments).
#' In that case it can be necessary to pass those objects to all processes of the used cluster via \code{\link[parallel]{clusterExport}}.
#' An illustration is given in the section 'Examples'.}
#' \item{4.}{Using parallel R code inside \code{fn} and \code{gr} can work if suitable clusters are setup (one cluster for \code{optimParallel} and one for the parallel execution of \code{fn} and \code{gr}).}
#' \item{5.}{Using \code{optimParallel} with \eqn{n} parallel processes increases the memory usage by about factor \eqn{n} compared to a call to \code{\link[stats]{optim}}.
#' If the memory limit is reached this may severely slowdown the optimization.
#' Strategies to reduce memory usage are
#' (1) kill all unused processes on the computer,
#' (2) revise the code of \code{fn} and/or \code{gr} to reduce its memory usage, and
#' (3) reduce the number of parallel processes by specifying the argument \code{parallel=list(forward=TRUE)} and/or
#' setting up a cluster with less parallel processes.}
#' }
#'
#' @section Issues and bug report:
#' A list of known issues of \code{optimParallel} can be found at \url{https://github.com/florafauna/optimParallel-R/issues}.
#' Please report issues not listed there to\eqn{\,} \email{flora.fauna.gerber@@gmail.com}. Do not forget to include
#' an R script reproducing the issue and the output of \code{sessionInfo()}.
#'
#' @seealso
#' \code{\link[stats]{optim}},
#' \code{\link[parallel]{makeCluster}},
#' \code{\link[parallel]{setDefaultCluster}},
#' \code{\link[parallel]{stopCluster}},
#' \code{\link[parallel]{detectCores}}.
#' @examples
#' negll <- function(par, x, sleep=0, verbose=TRUE){
#' if(verbose)
#' cat(par, "\n")
#' Sys.sleep(sleep)
#' -sum(dnorm(x=x, mean=par[1], sd=par[2], log=TRUE))
#' }
#' set.seed(13); x <- rnorm(1000, 5, 2)
#'
#' cl <- makeCluster(2) # set the number of processor cores
#' setDefaultCluster(cl=cl) # set 'cl' as default cluster
#'
#' optimParallel(par=c(1,1), fn=negll, x=x, lower=c(-Inf, .0001))
#'
#' optimParallel(par=c(1,1), fn=negll, x=x, sleep=0, verbose=TRUE,
#' lower=c(-Inf, .0001), parallel=list(loginfo=TRUE))
#'
#' setDefaultCluster(cl=NULL); stopCluster(cl)
#'
#' ## default values of the argument 'parallel':
#' options("optimParallel.forward", "optimParallel.loginfo")
#'
#' \dontrun{
#' ## - use all avilable processor cores
#' ## - return cat() output to R prompt
#' ## (may have issues on Windows)
#' if(tolower(.Platform$OS.type) != "windows"){
#' cl <- makeCluster(spec=detectCores(), type="FORK", outfile="")
#' } else
#' cl <- makeCluster(spec=detectCores(), outfile="")
#' setDefaultCluster(cl=cl)
#'
#' ## return log information
#' options(optimParallel.loginfo=TRUE)
#'
#' ## stop if change of f(x) is smaller than 0.01
#' control <- list(factr=.01/.Machine$double.eps)
#'
#' optimParallel(par=c(1,1), fn=negll, x=x, sleep=.5, verbose=TRUE,
#' verbose=TRUE, lower=c(-Inf, .0001), control=control)
#' ## each step invokes 5 parallel calls to negll()
#'
#' optimParallel(par=c(1,1), fn=negll, x=x, sleep=.5, verbose=TRUE,
#' lower=c(-Inf, .0001), control=control,
#' parallel=list(forward=TRUE))
#' ## each step invokes 3 parallel calls to negll()
#'
#' ## passing objects to fn/gr (see section 'Notes')
#' ## ----------------------------------------------
#' a <- 10
#' fn <- function(par, b) sum((par-a-b)^2)
#'
#' ## approach 1:
#' clusterExport(cl, "a")
#' optimParallel(par=1, fn=fn, b=1)
#'
#' ## approach 2 (recommended):
#' ## rewrite 'fn' such that all necessary objects
#' ## are passed as arguments
#' fn <- function(par, a, b) sum((par-a-b)^2)
#' optimParallel(par=1, fn=fn, a=20, b=1)
#'
#' setDefaultCluster(cl=NULL); stopCluster(cl) }
#' @export
#' @importFrom stats optim
optimParallel <- function(par, fn, gr = NULL, ...,
lower = -Inf, upper = Inf, control = list(), hessian = FALSE,
parallel=list()){
fg <- FGgenerator(par=par, fn=fn, gr=gr, ..., lower=lower, upper=upper,
control = control, parallel=parallel)
control$fnscale <- NULL # already taken into account in FGgenerator()
out <- stats::optim(par=par, fn=fg$f, gr=fg$g, method = "L-BFGS-B", lower=lower,
upper=upper, control=control, hessian=hessian)
out$value <- out$value*fg$control$fnscale
if(hessian[1])
out$hessian <- out$hessian*fg$control$fnscale
if(fg$parallel$loginfo){
out[[length(out)+1]] <- fg$getLog()
names(out)[length(out)] <- "loginfo"
}
out
}
#' @importFrom parallel getDefaultCluster parLapply clusterExport clusterEvalQ
FGgenerator <- function(par, fn, gr=NULL, ...,
lower=-Inf, upper=Inf,
control=list(),
parallel=list()){
stopifnot(is.numeric(par), is.vector(par), length(par)>=1)
n <- length(par)
stopifnot(is.function(fn))
testFn(fn, dots=list(...))
if(!is.null(gr)){
stopifnot(is.function(gr))
testFn(gr, dots=list(...))
}
stopifnot(is.numeric(lower), is.numeric(upper))
if(any(is.na(lower))) lower[is.na(lower)] <- -Inf
if(any(is.na(upper))) lower[is.na(upper)] <- Inf
stopifnot(is.null(control$ndeps) || is.numeric(control$ndeps))
if(is.null(control$ndeps)) control$ndeps <- 1e-3
stopifnot(is.null(control$fnscale) || is.numeric(control$fnscale))
control$fnscale <- if(is.null(control$fnscale)) 1 else control$fnscale[1]
stopifnot(is.null(control$parscale) || is.numeric(control$parscale))
if(is.null(control$parscale)) control$parscale <- 1
if(is.null(gr)){
ndeps_mat <- array(0, c(n,n))
ndeps_vec <- rep(control$ndeps*control$parscale, length.out=n)
diag(ndeps_mat) <- ndeps_vec
}
if(is.null(parallel$forward))
parallel$forward <- getOption("optimParallel.forward")
stopifnot(length(parallel$forward)==1,
isTRUE(parallel$forward) || !isTRUE(parallel$forward))
if(is.null(parallel$cl))
parallel$cl <- parallel::getDefaultCluster()
if(!inherits(parallel$cl, "cluster"))
stop("No (default) cluster specified. See the description of the argument 'parallel'.")
if(is.null(parallel$loginfo))
parallel$loginfo <- getOption("optimParallel.loginfo")
stopifnot(length(parallel$loginfo)==1,
isTRUE(parallel$loginfo) || !isTRUE(parallel$loginfo))
## prepare function evaluations
## export '...', 'fn', and 'gr' to cluster
dots <- list(...)
e <- list2env(dots)
assign("fn", fn, envir=e)
assign("gr", gr, envir=e)
parallel::clusterExport(parallel$cl, "e", list2env(list(e=e)))
if(!is.null(gr)){
exprList <- getExprGr(fn=fn, gr=gr, dots=dots)
} else {
nParallel <- if(parallel$forward) 1+length(par) else 1+2*length(par)
exprList <- lapply(seq_len(nParallel), getExprApprox, f=fn, name=names(par), dots=dots)
}
# print(exprList)
evalFG <- function(par){
## the first argument of fn has to be a vector of length length(par)
if(identical(par, par_last))
return(list(value=value, grad=grad))
if(is.null(gr)){
if(parallel$forward){
ndepsused <- ndeps_vec
parMat <- data.frame(cbind(array(par, c(n,n))+ndeps_mat))
if(!(is.null(upper) || all(is.na(upper)) || all(upper==Inf))){
hitu <- unlist(lapply(parMat, function(par){any(par>upper)}))
if(any(hitu)){
parMatl <- data.frame(cbind(array(par, c(n,n))-ndeps_mat))
parMat[hitu] <- parMatl[hitu]
ndepsused[hitu] <- -ndeps_vec[hitu]
}
}
parMat <- cbind(parMat, par)
parallel::clusterExport(parallel$cl, "parMat", list2env(list(parMat=parMat)))
parallel::clusterEvalQ(parallel$cl, assign("parMat", parMat, envir=e))
ev <- unname(unlist(parallel::parLapply(parallel$cl, exprList, eval)))
ev <- ev/control$fnscale
value <- ev[length(ev)]
length(ev) <- length(ev)-1
grad <- (ev-value)/ndepsused
} else { # two sided
ndepsused <- 2*ndeps_vec
parMat <- data.frame(cbind(array(par, c(n,n))+ndeps_mat, array(par, c(n,n))-ndeps_mat))
if(!(is.null(upper) || all(is.na(upper)) || all(upper==Inf))){
hitu <- unlist(lapply(parMat, function(par){any(par>upper)}))
if(any(hitu)){
parMat[hitu] <- par
hitui <- apply(matrix(hitu, ncol=2), 1, any)
ndepsused[hitui] <- ndeps_vec[hitui]
}
}
if(!(is.null(lower) || all(is.na(lower)) || all(lower==Inf))){
hitl <- unlist(lapply(parMat, function(par){any(par<lower)}))
if(any(hitl)){
parMat[hitl] <- par
hitli <- apply(matrix(hitl, ncol=2), 1, any)
ndepsused[hitli] <- ndeps_vec[hitli]
}
}
parMat <- cbind(parMat, par)
parallel::clusterExport(parallel$cl, "parMat", list2env(list(parMat=parMat)))
parallel::clusterEvalQ(parallel$cl, assign("parMat", parMat, envir=e))
ev <- unname(unlist(parallel::parLapply(parallel$cl, exprList, eval)))
ev <- ev/control$fnscale
value <- ev[length(ev)]
length(ev) <- length(ev)-1
ev_mat <- matrix(ev, ncol=2)
grad <- c(ev_mat[,1]-ev_mat[,2])/ndepsused
}
}else{ # gr is not null
parallel::clusterExport(parallel$cl, "par", list2env(list(par=par)))
parallel::clusterEvalQ(parallel$cl, assign("par", par, envir=e))
res <- parallel::parLapply(parallel$cl, exprList, eval)
value <- res[[1]]/control$fnscale
grad <- res[[2]]/control$fnscale
}
if(is.null(optimlog)){
optimlog <- c(i_e+1, par, value, grad, use.names=FALSE)
names(optimlog) <- c("step", paste0("par", seq_along(par)), "fn", paste0("gr", seq_along(par)))
}
else{
optimlog <- rbind(optimlog, c(i_e+1, par, value=value, grad=grad))
rownames(optimlog) <- NULL
}
par_last <<- par
value <<- value
grad <<- grad
optimlog <<- optimlog
i_e <<- i_e+1
return(list(value=value, grad=grad))
}
f <- function(par){
evalFG(par)
i_f <<- i_f+1
return(value)
}
g <- function(par){
evalFG(par)
i_g <<- i_g+1
return(grad)
}
init <- function(){
i_f <<- i_g <<- i_e <<- 0
par_last <<- value <<- grad <<- NA
}
getCount <- function(){
c(i_e, i_f, i_g)
}
getLog <- function(){
optimlog
}
i_f <- i_g <- i_e <- 0
par_last <- value <- grad <- NA
optimlog <- NULL
list(f=f, g=g, init=init, evalFG=evalFG, getCount=getCount, getLog=getLog, control=control, parallel=parallel)
}
getFunCallStr <- function(fn, fnName="fn", dots){
ex <- paste0(fnName, "(par")
if(!is.primitive(fn)){
ff <- formals(fn)
if(names(ff)[1] != "...")
ff <- ff[-1]
if(all(names(ff) != "..."))
ff <- ff[names(ff) %in% names(dots)]
else
ff <- dots
if(length(ff)>=1){
ex <- paste0(ex, ",")
moreArgs <- paste(lapply(names(ff), function(x) paste0(x, "=", x)), collapse = ", ")
ex <- paste0(ex, moreArgs)
}
}
paste0(ex,")")
}
getExprApprox <- function(n, fn, name, dots){
ex <- paste0("local({par <- parMat[,", n, "]; ")
if(!is.null(name))
ex <- paste0(ex, "names(par) <- c(", paste0("\"", name, "\"", collapse=", "), "); ")
ex <- paste0(ex, getFunCallStr(fn, dots=dots), "}, envir=e)")
parse(text=ex)
}
getExprGr <- function(fn, gr, dots){
list(parse(text=paste0("local(", getFunCallStr(fn, "fn", dots=dots), ", envir=e)")),
parse(text=paste0("local(", getFunCallStr(gr, "gr", dots=dots), ", envir=e)")))
}
testFn <- function(f, dots){
if(!identical(dots, list()) && any(names(formals(args(f)))[1]==names(dots)))
warning("The first argument of \"fn\" and/or \"gr\" has the same name as one argument passed through \"...\". The value passed through \"...\" for that argument is ignored.")
invisible(NULL)
}
|