1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359
|
Rcgminu <- function(par, fn, gr, control = list(), ...) {
## An R version of the conjugate gradient minimization
## using the Dai-Yuan ideas
# This version is for unconstrained functions.
#
# Input:
# par = a vector containing the starting point
# fn = objective function (assumed to be sufficeintly
# differentiable)
# gr = gradient of objective function
# control = list of control parameters
# maxit = a limit on the number of iterations (default 500)
# maximize = TRUE to maximize the function (default FALSE)
# trace = 0 (default) for no output,
# >0 for output (bigger => more output)
# eps=1.0e-7 (default) for use in computing numerical
# gradient approximations.
# dowarn=TRUE by default. Set FALSE to suppress warnings.
#
# Output:
# A list with components:
#
# par: The best set of parameters found.
#
# value: The value of 'fn' corresponding to 'par'.
#
# counts: A two-element integer vector giving the number of
# calls to
# 'fn' and 'gr' respectively. This excludes those calls
# needed
# to compute the Hessian, if requested, and any calls to
# 'fn'
# to compute a finite-difference approximation to the
# gradient.
#
# convergence: An integer code. '0' indicates successful
# convergence.
# Error codes are
# '0' converged
# '1' indicates that the function evaluation count
# 'maxfeval'
# was reached.
# '2' indicates initial point is infeasible
#
# message: A character string giving any additional
# information returned
# by the optimizer, or 'NULL'.
#
#
# Author: John C Nash
# Date: April 2, 2009; revised July 28, 2009
#################################################################
# control defaults -- idea from spg
ctrl <- list(maxit = 500, maximize = FALSE, trace = 0, eps = 1e-07,
dowarn = TRUE, tol=0)
namc <- names(control)
if (!all(namc %in% names(ctrl)))
stop("unknown names in control: ", namc[!(namc %in% names(ctrl))])
ctrl[namc] <- control
npar<-length(par)
if (ctrl$tol == 0) tol <- npar * (npar * .Machine$double.eps) # for gradient test.
# Note -- integer overflow if npar*npar*.Machine$double.eps
else tol<-ctrl$tol
maxit <- ctrl$maxit # limit on function evaluations
maximize <- ctrl$maximize # TRUE to maximize the function
trace <- ctrl$trace # 0 for no output, >0 for output (bigger => more output)
if (trace > 2)
cat("trace = ", trace, "\n")
eps <- ctrl$eps
fargs <- list(...) # the ... arguments that are extra function / gradient data
grNULL <- is.null(gr)
dowarn <- ctrl$dowarn #
#############################################
if (maximize) {
warning("Rcgmin no longer supports maximize 111121 -- see documentation")
msg<-"Rcgmin no longer supports maximize 111121"
ans <- list(par, NA, c(0, 0), 9999, msg)
return(ans)
}
#############################################
# gr MUST be provided
if (is.null(gr)) { # if gr function is not provided STOP (Rvmmin has definition)
stop("A gradient calculation (analytic or numerical) MUST be provided for Rcgmin")
}
if ( is.character(gr) ) {
# Convert string to function call, assuming it is a numerical gradient function
mygr<-function(par=par, userfn=fn, ...){
do.call(gr, list(par, userfn, ...))
}
} else { mygr<-gr }
############# end test gr ####################
## Set working parameters (See CNM Alg 22)
if (trace > 0) {
cat("Rcgminu -- J C Nash 2009 - unconstrained version CG min\n")
cat("an R implementation of Alg 22 with Yuan/Dai modification\n")
}
bvec <- par # copy the parameter vector
n <- length(bvec) # number of elements in par vector
maxfeval <- round(sqrt(n + 1) * maxit) # change 091219
ig <- 0 # count gradient evaluations
ifn <- 1 # count function evaluations (we always make 1 try below)
stepredn <- 0.15 # Step reduction in line search
acctol <- 1e-04 # acceptable point tolerance
reltest <- 100 # relative equality test
accpoint <- as.logical(FALSE) # so far do not have an acceptable point
cyclimit <- min(2.5 * n, 10 + sqrt(n)) #!! upper bound on when we restart CG cycle
#!! getting rid of limit makes it work on negstart BUT inefficient
# This does not appear to be in Y H Dai & Y Yuan, Annals of
# Operations Research 103, 33-47, 2001 aor01.pdf
# in Alg 22 pascal, we can set this as user. Do we wish to allow that?
## tol <- n * (n * .Machine$double.eps) # # for gradient test.
## Note -- integer overflow if n*n*d.eps
fargs <- list(...) # function arguments
if (trace > 2) {
cat("Extra function arguments:")
print(fargs)
}
# Initial function value -- may NOT be at initial point
# specified by user.
if (trace > 2) {
cat("Try function at initial point:")
print(bvec)
}
f <- try(fn(bvec, ...), silent = TRUE) # Compute the function at initial point.
if (trace > 0) {
cat("Initial function value=", f, "\n")
}
if (inherits(f, "try-error")) {
msg <- "Initial point is infeasible."
if (trace > 0)
cat(msg, "\n")
ans <- list(par, NA, c(ifn, 0), 2, msg)
names(ans) <- c("par", "value", "counts", "convergence",
"message")
return(ans)
}
fmin <- f
if (trace > 0)
cat("Initial fn=", f, "\n")
if (trace > 2)
print(bvec)
# Start the minimization process
keepgoing <- TRUE
msg <- "not finished" # in case we exit somehow
oldstep <- 0.8 #!! 2/3 #!!?? Why this choice?
####################################################################
fdiff <- NA # initially no decrease
cycle <- 0 # !! cycle loop counter
while (keepgoing) {
# main loop -- must remember to break out of it!!
t <- as.vector(rep(0, n)) # zero step vector
c <- t # zero 'last' gradient
while (keepgoing && (cycle < cyclimit)) {
## cycle loop
cycle <- cycle + 1
if (trace > 0)
cat(ifn, " ", ig, " ", cycle, " ", fmin, " last decrease=",
fdiff, "\n")
if (trace > 2) {
print(bvec)
cat("\n")
}
if (ifn > maxfeval) {
msg <- paste("Too many function evaluations (> ",
maxfeval, ") ", sep = "")
if (trace > 0)
cat(msg, "\n")
ans <- list(par, fmin, c(ifn, ig), 1, msg) # 1 indicates not converged in function limit
names(ans) <- c("par", "value", "counts", "convergence",
"message")
return(ans)
}
par <- bvec # save best parameters
ig <- ig + 1
if (ig > maxit) {
msg <- paste("Too many gradient evaluations (> ",
maxit, ") ", sep = "")
if (trace > 0)
cat(msg, "\n")
ans <- list(par, fmin, c(ifn, ig), 1, msg) # 1 indicates not converged in function or gradient limit
names(ans) <- c("par", "value", "counts", "convergence",
"message")
return(ans)
}
g <- mygr(bvec, ...)
g1 <- sum(g * (g - c)) # gradient * grad-difference
g2 <- sum(t * (g - c)) # oldsearch * grad-difference
gradsqr <- sum(g * g)
if (trace > 1) {
cat("Gradsqr = ", gradsqr, " g1, g2 ", g1, " ",
g2, " fmin=", fmin, "\n")
}
c <- g # save last gradient
g3 <- 1 # !! Default to 1 to ensure it is defined -- t==0 on first cycle
if (gradsqr > tol * (abs(fmin) + reltest)) {
if (g2 > 0) {
betaDY <- gradsqr/g2
betaHS <- g1/g2
g3 <- max(0, min(betaHS, betaDY)) # g3 is our new 'beta' !! Dai/Yuan 2001, (4.2)
}
}
else {
msg <- paste("Very small gradient -- gradsqr =",
gradsqr, sep = " ")
if (trace > 0)
cat(msg, "\n")
keepgoing <- FALSE # done loops -- should we break ??
break # to leave inner loop
}
if (trace > 2)
cat("Betak = g3 = ", g3, "\n")
if (g3 == 0 || cycle >= cyclimit) {
# we are resetting to gradient in this case
if (trace > 0) {
if (cycle < cyclimit)
cat("Yuan/Dai cycle reset\n")
else cat("Cycle limit reached -- reset\n")
}
fdiff <- NA
cycle <- 0
break #!!
#!! oldstep<-1 # !!
#!! don't reset stepsize ## oldstep<-1 #!! reset
#!! break # to quit inner loop
}
else {
# drop through if not Yuan/Dai cycle reset
t <- t * g3 - g # t starts at zero, later is step vector
gradproj <- sum(t * g) # gradient projection
if (trace > 1)
cat("Gradproj =", gradproj, "\n")
# ?? Why do we not check gradproj size??
########################################################
#### Line search ####
OKpoint <- FALSE
if (trace > 2)
cat("Start linesearch with oldstep=", oldstep,
"\n")
steplength <- oldstep * 1.5 #!! try a bit bigger
f <- fmin
changed <- TRUE # Need to set so loop will start
while ((f >= fmin) && changed) {
bvec <- par + steplength * t
changed <- (!identical((bvec + reltest), (par + reltest)))
if (changed) {
# compute newstep, if possible
f <- fn(bvec, ...) # Because we need the value for linesearch, don't use try()
# instead preferring to fail out, which will hopefully be
# unlikely.
ifn <- ifn + 1
if (is.na(f) || (!is.finite(f))) {
warning("Rcgmin - undefined function")
f <- .Machine$double.xmax
}
if (f < fmin) {
f1 <- f # Hold onto value
}
else {
savestep<-steplength
steplength <- steplength * stepredn
if (steplength >=savestep) changed<-FALSE
if (trace > 0)
cat("*")
}
}
} # end while
changed1 <- changed # Change in parameters occured in step reduction
if (changed1)
{
## ?? should we check for reduction? or is this done in if
# (newstep >0) ?
newstep <- 2 * (f - fmin - gradproj * steplength) # JN 081219 change
if (newstep > 0) {
newstep = -(gradproj * steplength * steplength/newstep)
}
bvec <- par + newstep * t
changed <- (!identical((bvec + reltest),
(par + reltest)))
if (changed) {
f <- fn(bvec, ...)
ifn <- ifn + 1
}
if (trace > 2)
cat("fmin, f1, f: ", fmin, f1, f, "\n")
if (f < min(fmin, f1)) {
# success
OKpoint <- TRUE
accpoint <- (f <= fmin + gradproj * newstep *
acctol)
fdiff <- (fmin - f) # check decrease
fmin <- f
oldstep <- newstep # !! save it
}
else {
if (f1 < fmin) {
bvec <- par + steplength * t # reset best point
accpoint <- (f1 <= fmin + gradproj *
steplength * acctol)
OKpoint <- TRUE # Because f1 < fmin
fdiff <- (fmin - f1) # check decrease
fmin <- f1
oldstep <- steplength #!! save it
}
else {
# no reduction
fdiff <- NA
accpoint <- FALSE
} # f1<?fmin
} # f < min(f1, fmin)
if (trace > 1)
cat("accpoint = ", accpoint, " OKpoint = ",
OKpoint, "\n")
if (!accpoint) {
msg <- "No acceptable point -- exit loop"
if (trace > 0)
cat("\n", msg, "\n")
keepgoing <- FALSE
break #!!
}
} # changed1
else {
# not changed on step redn
if (cycle == 1) {
msg <- " Converged -- no progress on new CG cycle"
if (trace > 0)
cat("\n", msg, "\n")
keekpgoing <- FALSE
break #!!
}
} # end else
} # end of test on Yuan/Dai condition
#### End line search ####
} # end of inner loop (cycle)
if (oldstep < acctol) {
oldstep <- acctol
}
# steplength
if (oldstep > 1) {
oldstep <- 1
}
if (trace > 1)
cat("End inner loop, cycle =", cycle, "\n")
} # end of outer loop
msg <- "Rcgmin seems to have converged"
if (trace > 0)
cat(msg, "\n")
# par: The best set of parameters found.
# value: The value of 'fn' corresponding to 'par'.
# counts: number of calls to 'fn' and 'gr' (2 elements)
# convergence: An integer code. '0' indicates successful
# convergence.
# message: A character string or 'NULL'.
# if (maximize)
# fmin <- -fmin
ans <- list(par, fmin, c(ifn, ig), 0, msg)
names(ans) <- c("par", "value", "counts", "convergence",
"message")
return(ans)
} ## end of Rcgminu
|