1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066
|
optimr <- function(par, fn, gr=NULL, hess=NULL, lower=-Inf, upper=Inf,
method=NULL, hessian=FALSE, control=list(), ...) {
## 180706: Problem with maxit. Likely issue is that opm gets ctrldefault and
## updates with actual control list. But here in nlm, maxit defaults to 100.
## We need to be sure user has not tried to set both controls "maximize" and "fnscale"
# First case: User set's nothing
if (is.null(control$maximize) && is.null(control$fnscale)){control$fnscale = 1.0}
# Otherwise, user has set one or both. If both, there may be conflict.
else if (! is.null(control$maximize) ) { # user has set "maximize" control
if (control$maximize) { # user wants maximize. Check fnscale
if (is.null(control$fnscale)) {
control$fnscale <- -1.0 # set maximization
} else if (control$fnscale < 0.0) {
warning("User has set control$maximize = TRUE and admissible control$fnscale")
} else { stop("control$fnscale and control$maximize conflict") }
} else # control$maximize set to FALSE by user
if (is.null(control$fnscale)) {
control$fnscale <- 1.0 # set maximization
} else if (control$fnscale > 0.0) {
warning("User has set control$maximize = FALSE and admissible control$fnscale")
} else { stop("control$fnscale and control$maximize conflict") }
} # end is.null(control$maximize)
npar <- length(par)
ctrl <- ctrldefault(npar)
ncontrol <- names(control)
nctrl <- names(ctrl)
for (onename in ncontrol) {
if (onename %in% nctrl) {
if (! is.null(control[onename]) || ! is.na(control[onename]) )
ctrl[onename]<-control[onename]
}
}
control <- ctrl # note the copy back! control now has a FULL set of values
# with user input over-writing defaults as appropriate
## 180706: Should we try to streamline?
if (is.null(method)) method <- control$defmethod
outmethod <- checksolver(method, control$allmeth, control$allpkg) # there will only be one!
if (is.null(outmethod)) {
if (control$trace > 0) cat("Solver ",method," missing\n")
ans<-list() # ans not yet defined, so set as list
ans$convergence <- 8888 # failed in run
ans$value <- control$badval
ans$par<-rep(NA,npar)
ans$counts[1] <- NA # save function and gradient count information
ans$counts[2] <- NA # save function and gradient count information
ans$message <- paste("Missing method ",method)
ans$hessian <- NULL
return(ans) # can't proceed without solver
}
# Check if bounded
bdmsk <- bmchk(par, lower=lower, upper=upper, shift2bound=TRUE)
if (bdmsk$parchanged) warning("Parameter(s) changed to nearest bounds\n")
control$have.bounds <- bdmsk$bounds # and set a control value
orig.method <- method
orig.gr <- gr
orig.fn <- fn
if (is.null(hessian) ){
savehess <- FALSE
} else { savehess <- hessian } # logical -- whether to save hessian
if (is.null(control$trace)) control$trace <- control$trace
if (is.null(control$parscale)) {
pscale <- rep(1,npar)
if(control$trace > 0) { cat("Unit parameter scaling\n") }
} else {
pscale <- control$parscale
if(control$trace > 0) {
cat("Parameter scaling:")
print(pscale)
}
}
spar <- par/pscale # scaled parameters
slower <- -Inf
supper <- Inf # to ensure defined
if (control$have.bounds) {
slower <- lower/pscale
supper <- upper/pscale
}
# 160615 -- decided to postpone adding nloptr
efn <- function(spar, ...) {
# rely on pscale being defined in this enclosing environment
par <- spar*pscale
val <- fn(par, ...) * control$fnscale
}
appgr<-FALSE # so far assuming analytic gradient
# DO NOT PROVIDE A DEFAULT -- LET METHOD DO THIS
# if (is.null(gr)) gr <- control$defgrapprox
# if (is.null(gr)) cat("gr is NULL\n")
if (is.character(gr)) {
appgr <- TRUE # to inform us that we are using approximation
egr <- function(spar, ...){
if (control$trace > 1) {
cat("control$fnscale =",control$fnscale," pscale=")
print(pscale)
cat("gr:")
print(gr)
cat("par:")
print(par)
}
par <- spar*pscale
result <- do.call(gr, list(par, userfn=fn, ...)) * control$fnscale
}
} else {
if (is.null(gr)) {egr <- NULL}
else {
egr <- function(spar, ...) {
par <- spar*pscale
result <- gr(par, ...) * pscale * control$fnscale
}
}
} # end egr definition
if (is.null(hess)) {
ehess <- NULL
} else { ehess <- function(spar, ...) {
par <- spar*pscale
result <- hess(par, ...) * pscale * pscale * control$fnscale
result
}
}
if (appgr && (control$trace>0)) cat("Using numerical approximation '",gr,"' to gradient in optimru()\n")
nlmfn <- function(spar, ...){
f <- efn(spar, ...)
if (is.null(egr)) { g <- NULL} else {g <- egr(spar, ...) }
attr(f,"gradient") <- g
if (is.null(ehess)) { h <- NULL } else {h <- ehess(spar, ...) }
attr(f,"hessian") <- h
f
}
## cat("Check nlmfn at spar\n")
## print(nlmfn(spar, ...))
## Masks
maskmeth <- control$maskmeth
msk <- bdmsk$bdmsk # Only need the masks bit from here on
if (any(msk == 0) ) {
if ( !(method %in% maskmeth) ) {
stopmsg <- paste("Method ",method," cannot handle masked (fixed) parameters")
stop(stopmsg)
}
if (control$trace > 0) cat("Masks present\n")
}
# replacement for optim to minimize using a single method
# time is in opm(), but not here
# The structure has par, value, counts, convergence, message, hessian
# Run a single method
# expand bounds
if (length(lower) == 1 && is.finite(lower) ) lower<-rep(lower,npar)
if (length(upper) == 1 && is.finite(upper) ) upper<-rep(upper,npar)
mcontrol <- list() # define the control list
# Methods from optim()
if (method == "Nelder-Mead" ||
method == "BFGS" ||
method == "L-BFGS-B" ||
method == "CG" ||
method == "SANN") {
# Take care of methods from optim(): Nelder-Mead, BFGS, L-BFGS-B, CG
mcontrol$maxit <- control$maxit
if (! is.null(control$maxit)) {mcontrol$maxit <- control$maxit}
mcontrol$trace <- control$trace
mcontrol$parscale <- NULL # using user fn
mcontrol$fnscale <- NULL
## mcontrol$fnscale <- control$fnscale # 180313 Carlo Lapid ?? wrong, use efn, egr
# Note: hessian always FALSE in these calls. But savehess may recover it.
# cat("Before optim() call - control$have.bounds =",control$have.bounds,"\n")
if (control$have.bounds) {
if (method != "L-BFGS-B") {
errmsg <- "optim() can only handle bounds with L-BFGS-B\n"
if (control$trace > 0) cat(errmsg,"\n")
ans <- list()
class(ans)[1] <- "try-error"
warning("optimr: optim() with bounds ONLY uses L-BFGS-B")
} else {
ans <- try(optim(par=par, fn=efn, gr=egr,
lower=lower, upper=upper, method="L-BFGS-B", hessian=FALSE,
control=mcontrol, ...))
}
} else {
ans <- try(optim(par=par, fn=efn, gr=egr,
method=method, hessian=FALSE, control=mcontrol, ...))
}
if (inherits(ans,"try-error")) { # bad result -- What to do?
ans<-list() # ans not yet defined, so set as list
ans$convergence <- 9999 # failed in run
errmsg <- "optim method failure\n"
if (method != "L-BFGS-B")
errmsg <- paste("optim() with bounds ONLY uses L-BFGS-B: ", errmsg)
if (control$trace>0) cat(errmsg)
ans$value <- control$badval
ans$par<-rep(NA,npar)
ans$counts[1] <- NA # save function and gradient count information
ans$counts[2] <- NA # save function and gradient count information
ans$message <- errmsg
} # otherwise ans is OK and we return it
## return(ans) # to ensure we return
} # end if using optim() methods
## --------------------------------------------
else if (method == "nlminb") {
# Here we use portLib routine nlminb rather than optim as our minimizer
mcontrol$iter.max<-mcontrol$maxit # different name for iteration limit in this routine
mcontrol$maxit<-NULL # and we null it out
mcontrol$abs.tol <- 0 # To fix issues when minimum is less than 0. 20100711
mcontrol$eval.max <- control$maxfeval
if ( is.null(control$trace) || is.na(control$trace) || control$trace == 0) {
mcontrol$trace = 0
} else {
mcontrol$trace = 1 # this is EVERY iteration. nlminb trace is freq of reporting.
}
ans <- try(nlminb(start=spar, objective=efn, gradient=egr, hessian=ehess, lower=slower,
upper=supper, control=mcontrol, ...))
if (! inherits(ans, "try-error")) {
# Translate output to common format and names
ans$value<-ans$objective
ans$par <- ans$par*pscale
ans$objective<-NULL
ans$counts[1] <- ans$evaluations[1]
ans$counts[2] <- ans$evaluations[2]
ans$evaluations<-NULL # cleanup
ans$iterations<-NULL
ans$hessian <- NULL
} else { # bad result -- What to do?
ans<-list() # ans not yet defined, so set as list
ans$convergence <- 9999 # failed in run
if (control$trace>0) cat("nlminb failure\n")
ans$value <- control$badval
ans$par<-rep(NA,npar)
ans$counts[1] <- NA # save function and gradient count information
ans$counts[2] <- NA # save function and gradient count information
ans$message <- "nlminb failed" # 180318 change from NULL
ans$hessian <- NULL
}
## return(ans)
} ## end if using nlminb
## --------------------------------------------
else if (method == "nlm") { # Use stats package nlm routine
# if (is.null(gr)) { stop("optimr -- nlm -- we do not allow gr = NULL") }
if (! is.null(control$maxit) ) {iterlim <- control$maxit }
else { iterlim <- 100 }
print.level <- 0
errmsg <- NULL
if (control$have.bounds) {
if(control$trace > 0) cat("nlm cannot handle bounds\n")
errmsg <- "nlm cannot handle bounds\n"
## stop("nlm tried with bounds")
ans <- list()
class(ans)[1] <- "try-error"
} else {
if (! is.null(control$trace) && (control$trace > 0) ) {print.level <- 2 }
ans <- try(nlm(f=nlmfn, p=spar, iterlim=iterlim, print.level=print.level, ...))
}
if (! inherits(ans, "try-error")) {
if (ans$code == 1 || ans$code == 2 || ans$code == 3) ans$convergence <- 0
if (ans$code == 4) ans$convergence <- 1
if (ans$code == 5) ans$convergence <- 5
# Translate output to common format
ans$value <- ans$minimum
ans$minimum <- NULL
ans$par <- ans$estimate*pscale
ans$estimate <- NULL
ans$counts[2] <- ans$iterations
ans$counts[1] <- NA
ans$iterations <- NULL
ans$hessian <- NULL
ans$gradient <- NULL # We lose information here
ans$message <- paste("nlm: Convergence indicator (code) = ",ans$code)
ans$code <- NULL
} else {
if (control$trace > 0) cat("nlm failed for this problem\n")
ans<-list() # ans not yet defined, so set as list
ans$convergence <- 9999 # failed in run
ans$value <- control$badval
ans$par<-rep(NA,npar)
ans$counts[1] <- NA # save function and gradient count information
ans$counts[2] <- NA # save function and gradient count information
ans$message <- "nlm failed" # 180318 change from NULL
ans$hessian <- NULL
}
print.level <- NULL # clean up
## return(ans)
} # end if using nlm
## --------------------------------------------
else if (method == "Rcgmin") { # Use Rcgmin routine (ignoring masks)
mcontrol$trace <- control$trace
mcontrol$maxit <- control$maxit # 151217 JN
if (! is.null(egr)) {
if (control$have.bounds) { # 151220 -- this was not defined
# 170919 -- explicit reference to package
ans <- try(Rcgminb(par=spar, fn=efn, gr=egr, lower=slower,
upper=supper, bdmsk=msk, control=mcontrol, ...))
} else {
ans <- try(Rcgminu(par=spar, fn=efn, gr=egr, control=mcontrol, ...))
}
}
if (!is.null(egr) && !inherits(ans, "try-error")) {
ans$par <- ans$par*pscale
ans$message <- NA
ans$hessian <- NULL
ans$bdmsk <- NULL # clear this
} else {
if (control$trace>0) {
cat("Rcgmin failed for current problem \n")
if(is.null(egr)) cat("Note: Rcgmin needs gradient function specified\n")
}
ans<-list() # ans not yet defined, so set as list
ans$convergence <- 9999 # failed in run
ans$value <- control$badval
ans$par<-rep(NA,npar)
ans$counts[1] <- NA # save function and gradient count information
ans$counts[2] <- NA # save function and gradient count information
ans$message <- NULL
if(is.null(egr)) {
ans$message <- "Must specify gradient function for Rcgmin"
ans$convergence <- 9998 # for no gradient where needed
}
ans$hessian <- NULL
}
## return(ans)
} ## end if using Rcgmin
## --------------------------------------------
else if (method == "Rvmmin") { # Use Rvmmin routine (ignoring masks??)
mcontrol$maxit <- control$maxit
mcontrol$maxfeval <- control$maxfeval
mcontrol$trace <- control$trace # 140902 Note no check on validity of values
if (! is.null(egr)) {
ans <- try(Rvmmin(par=spar, fn=efn, gr=egr, lower=slower,
upper=supper, bdmsk=msk, control=mcontrol, ...))
}
if (control$trace > 2) {
cat("Rvmmin ans:")
print(ans)
}
if (! is.null(egr) && !inherits(ans, "try-error")) {
ans$par <- ans$par*pscale
ans$bdmsk <- NULL
} else {
if (control$trace>0) {
cat("Rvmmin failed for current problem \n")
if(is.null(egr)) cat("Note: Rvmmin needs gradient function specified\n")
}
ans<-list() # ans not yet defined, so set as list
ans$value <- control$badval
ans$par<-rep(NA,npar)
ans$counts[1] <- NA # save function and gradient count information
ans$counts[2] <- NA # save function and gradient count information
ans$message <- NULL
if(is.null(egr)) {
ans$message <- "Must specify gradient function for Rvmmin"
ans$convergence <- 9998 # for no gradient where needed
}
ans$hessian <- NULL
}
## return(ans)
} ## end if using Rvmmin
## --------------------------------------------
else if (method == "snewton") { # Use snewton routine (no bounds or masks??)
mcontrol$maxit <- control$maxit
mcontrol$maxfeval <- control$maxfeval # changed from maxfevals 180321
mcontrol$trace <- control$trace # 140902 Note no check on validity of values
ans<-list(par=NA, value=NA, counts=NA, convergence=-1,
message=NA, hessian=NULL) # ans not yet defined, so set as list
if ( (! is.null(egr)) && (! is.null(ehess)) ) {
if (control$have.bounds) { # 170919 make package explicit
stop("snewton does not handle bounds") # ?? error -- doesn't handle bounds
}
tans <- try( snewton(par=spar, fn=efn, gr=egr, hess=ehess, control=mcontrol,...))
if (control$trace>1) {
cat("snewton returns tans:")
print(tans)
}
if (inherits(tans, "try-error")) {
ans$message <- "snewton failed"
ans$convergence <- 9999
if (control$trace>0) {
cat(ans$message,"\n")
}
}
} else {
if(is.null(egr)) {
ans$message <- "Must specify gradient function for snewton"
ans$convergence <- 9998 # for no gradient where needed
warning("Note: snewton needs gradient function specified")
}
if(is.null(ehess)) {
ans$message <- "Must specify Hessian function (hess) for snewton"
ans$convergence <- 9997 # for no gradient where needed
warning("Note: snewton needs Hessian function (hess) specified")
}
}
if (ans$convergence > 9996){
ans$value <- control$badval
ans$par<-rep(NA,npar)
ans$counts[1] <- NA # save function and gradient count information
ans$counts[2] <- NA # save function and gradient count information
# Note: in optim() no provision for hessian count
ans$hessian <- NULL
if (control$trace>1) {
cat("snewton falure ans:")
print(ans)
}
} else { # have an answer
ans$par <- tans$par*pscale
ans$value <- tans$value
attr(ans, "gradient") <- tans$grad
if(hessian) ans$hessian <- tans$Hess
ans$counts[1] <- tans$counts$nfn
ans$counts[2] <- tans$counts$ngr
ans$message <- tans$message
ans$convergence <- tans$convcode
tans <- NULL # probably unnecessary, but for safety
if (control$trace>1) {
cat("rejigged ans:")
print(ans)
}
} # end have answer
## return(ans)
} ## end if using snewton
## --------------------------------------------
else if (method == "snewtonm") { # Use snewtonm routine (no bounds or masks??)
mcontrol$maxit <- control$maxit
mcontrol$maxfeval <- control$maxfeval # changed from maxfevals 180321
mcontrol$trace <- control$trace # 140902 Note no check on validity of values
ans<-list(par=NA, value=NA, counts=NA, convergence=-1,
message=NA, hessian=NULL) # ans not yet defined, so set as list
if ( (! is.null(egr)) && (! is.null(ehess)) ) {
if (control$have.bounds) { # 170919 make package explicit
stop("snewtonm does not handle bounds") # ?? error -- doesn't handle bounds
}
tans <- try( snewtonm(par=spar, fn=efn, gr=egr, hess=ehess, control=mcontrol,...))
if (control$trace>0) {
cat("snewtonm returns tans:")
print(tans)
}
if (inherits(tans, "try-error")) {
ans$message <- "snewtonm failed"
ans$convergence <- 9999
if (control$trace>0) {
cat(ans$message,"\n")
}
}
} else {
if(is.null(egr)) {
ans$message <- "Must specify gradient function for snewtonm"
ans$convergence <- 9998 # for no gradient where needed
warning("Note: snewtonm needs gradient function specified")
}
if(is.null(ehess)) {
ans$message <- "Must specify Hessian function (hess) for snewtonm"
ans$convergence <- 9997 # for no Hessian where needed
warning("Note: snewtonm needs Hessian function specified")
}
} # end of fails
if (ans$convergence > 9996){ # Bad solution
ans$value <- control$badval
ans$par<-rep(NA,npar)
ans$counts[1] <- NA # save function and gradient count information
ans$counts[2] <- NA # save function and gradient count information
# Note: in optim() no provision for hessian count
ans$hessian <- NULL
if (control$trace>1) {
cat("snewton falure ans:")
print(ans)
}
} else { # have an answer
# cat("copy answer with tans$par:\n")
# print(tans$par)
ans$par <- tans$par*pscale
ans$value <- tans$value
attr(ans, "gradient") <- tans$grad
if(hessian) ans$hessian <- tans$Hess
ans$counts[1] <- tans$counts$nfn
ans$counts[2] <- tans$counts$ngr
ans$message <- tans$message
ans$convergence <- tans$convcode
tans <- NULL # probably unnecessary, but for safety
if (control$trace>1) {
cat("rejigged ans:")
print(ans)
}
} # end have answer
ans
} ## end if using snewtonm
## --------------------------------------------
else if (method == "hjn") {# Use JN Hooke and Jeeves
if (control$trace > 0) {
# this function is in optimr, so does not need explicit package
cat("hjn:control$have.bounds =",control$have.bounds,"\n")
cat("optimr - hjn - msk:")
print(msk)
}
# 180327 Cannot maximize with hjn itself.
mcontrol <- control # copy
mcontrol$maximize <- NULL # and null out maximize
ans <- try(hjn(spar, efn, lower=slower, upper=supper, bdmsk=msk,
control=control, ...))
if (! inherits(ans, "try-error")) {
## Need to check these carefully??
ans$par <- ans$par*pscale
ans$value <- ans$value*control$fnscale
ans$message <- NA # Should add a msg ??
} else {
if (control$trace > 0) cat("hjn failed for current problem \n")
ans<-list() # ans not yet defined, so set as list
ans$value <- control$badval
ans$par <- rep(NA,npar)
ans$convergence <- 9999 # failed in run
ans$counts[1] <- NA
ans$counts[1] <- NA
ans$hessian <- NULL
ans$message <- NA
}
## return(ans)
} ## end if using hjn
## --------------------------------------------
else if (method == "spg") { # Use BB package routine spg as minimizer
mcontrol$maximize <- NULL # Use external maximization approach
mcontrol$maxit <- control$maxit
mcontrol$maxfeval <- control$maxfeval
if (control$trace > 0) {
mcontrol$trace <- TRUE
if (control$trace > 1) mcontrol$triter <- 1 # default is 10
} else { mcontrol$trace <- FALSE }
ans <- try(BB::spg(par=spar, fn=efn, gr=egr, lower=slower, upper=supper,
control=mcontrol, ...))
if (! inherits(ans, "try-error")) {
ans$par <- ans$par*pscale
ans$counts[1] <- ans$feval
ans$feval<-NULL # to erase conflicting name
ans$counts[2] <- ans$iter
ans$fn.reduction <- NULL # so it does not interfere
ans$iter<-NULL
ans$gradient<-NULL # loss of information
} else { # spg failed
if (control$trace > 0) cat("spg failed for this problem\n")
ans<-list() # ans not yet defined, so set as list
ans$convergence <- 9999 # failed in run
ans$value <- control$badval
ans$par<-rep(NA,npar)
ans$counts[1] <- NA # save function and gradient count information
ans$counts[2] <- NA # save function and gradient count information
ans$message <- NULL
ans$hessian <- NULL
}
## return(ans)
} # end if using spg
## --------------------------------------------
else if (method == "ucminf") {
## Use ucminf routine
if (is.null(control$maxit)) { mcontrol$maxeval <- 500 } # ensure there is a default value
else { mcontrol$maxeval <- control$maxit}
mcontrol$maxit <- NULL # 150427 ensure nulled for ucminf
errmsg <- NULL
if (control$have.bounds) {
if (control$trace > 0) cat("ucminf cannot handle bounds\n")
errmsg <- "ucminf cannot handle bounds\n"
stop(errmsg)
ans <- list()
class(ans)[1] <- "try-error"
} else {
uhessian <- 0 # Ensure hessian NOT computed
ans <- try(ucminf::ucminf(par=spar, fn=efn, gr=egr,
hessian = uhessian, control=mcontrol, ...))
}
if (! inherits(ans, "try-error")) {
# From ucminf documentation: convergence = 1 Stopped by small gradient (grtol).
# 2 Stopped by small step (xtol).
# 3 Stopped by function evaluation limit (maxeval).
# 4 Stopped by zero step from line search
# -2 Computation did not start: length(par) = 0.
# -4 Computation did not start: stepmax is too small.
# -5 Computation did not start: grtol or xtol <= 0.
# -6 Computation did not start: maxeval <= 0.
# -7 Computation did not start: given Hessian not pos. definite.
# message: String with reason of termination.
if (ans$convergence == 1
|| ans$convergence == 2
|| ans$convergence == 4) {
ans$convergence <- 0
}
ans$par <- ans$par*pscale
ans$counts[1] <- ans$info[4]
ans$counts[2] <- ans$info[4] # calls fn and gr together
ans$info <- NULL # to erase conflicting name
ans$nitns <- NULL
ans$hessian <- NULL
ans$invhessian.lt <- NULL
if (control$trace > 0) cat("ucminf message:",ans$message,"\n")
} else { # ucminf failed
if (control$trace > 0) cat("ucminf failed for this problem\n")
ans<-list() # ans not yet defined, so set as list
ans$convergence <- 9999 # failed in run
ans$value <- control$badval
ans$par<-rep(NA,npar)
ans$counts[1] <- NA # save function and gradient count information
ans$counts[2] <- NA # save function and gradient count information
ans$message <- errmsg
ans$hessian <- NULL
}
uhessian <- NULL
## return(ans)
} ## end if using ucminf
## --------------------------------------------
else if (method == "Rtnmin") { # Use Rtnmin routines
if (control$trace>0) {mcontrol$trace <- TRUE } else {mcontrol$trace <- FALSE}
ans<-list() # ans not yet defined, so set as list
errmsg <- NA
class(ans)[1] <- "undefined" # initial setting
if (is.null(egr)) { ## fixed msg below (referred to lbfgs) 170214
if (control$trace > 0) cat("Rtnmin MUST have gradient provided\n")
errmsg <- "Rtnmin MUST have gradient provided"
class(ans)[1] <- "try-error"
} else {
if (control$have.bounds) {
ans <- try(tnbc(x=spar, fgfun=nlmfn, lower=slower,
upper=supper, trace=mcontrol$trace, ...))
} else {
ans <- try(tn(x=spar, fgfun=nlmfn, trace=mcontrol$trace, ...))
}
}
if (inherits(ans,"try-error")) {
if (control$trace>0) cat("Rtnmin failed for current problem \n")
ans$convergence <- 9999 # failed in run
ans$message <- "Rtnmin failed fo current problem"
if (is.null(egr)) {
ans$convergence <- 9998
ans$message <- errmsg
ans$value <- 1234567E20
}
ans$value <- control$badval
ans$par<-rep(NA,npar)
ans$counts[1] <- NA # save function and gradient count information
ans$counts[2] <- NA
ans$hessian <- NULL
} else {
ans$par <- ans$xstar*pscale
ans$xstar <- NULL
ans$value <- as.numeric(ans$f)
ans$f <- NULL
ans$g <- NULL
ans$convergence <- ans$ierror
ans$ierror <- NULL
ans$counts[1] <- ans$nfngr
ans$counts[2] <- ans$nfngr
ans$nfngr <- NULL
ans$hessian <- NULL
ans$message <- NA
}
## return(ans)
} ## end if using Rtnmin
## --------------------------------------------
else if (method == "bobyqa") {# Use bobyqa routine from minqa package
mcontrol$maxfun <- control$maxfeval
mcontrol$iprint <- control$trace
myrhobeg <- min(supper - slower)/3 # JN 160107 (3), 160125 (5)
if ((myrhobeg < 1e-8) || ! is.finite(myrhobeg) ) myrhobeg <- 0.5
mcontrol$rhobeg <- myrhobeg # to avoid 0 when parameters 0
ans <- try(minqa::bobyqa(par=spar, fn=efn, lower=slower,
upper=supper, control=mcontrol,...))
if (! inherits(ans, "try-error")) {
ans$convergence <- 0
# if (ans$feval > mcontrol$maxfun) {
# ans$convergence <- 1 # too many evaluations
# }
ans$convergence <- ans$ierr
ans$ierr <- NULL
ans$message <- ans$msg
ans$msg <- NULL
ans$counts[1] <- ans$feval
ans$counts[2] <- NA
ans$feval <- NULL
ans$value<-ans$fval
ans$par <- ans$par*pscale
ans$fval <- NULL # not used
ans$hessian <- NULL
} else {
if (control$trace > 0) cat("bobyqa failed for current problem \n")
ans<-list() # ans not yet defined, so set as list
ans$convergence <- 9999 # failed in run
ans$value <- control$badval
ans$par<-rep(NA,npar)
ans$counts[1] <- NA # save function and gradient count information
ans$counts[2] <- NA # save function and gradient count information
ans$message <- NULL
ans$hessian <- NULL
}
ans <- unclass(ans) # because minqa does strange things!
## return(ans)
} ## end if using bobyqa
## --------------------------------------------
else if (method == "uobyqa") {# Use uobyqa routine from minqa package
mcontrol$maxfun <- control$maxfeval
mcontrol$iprint <- control$trace
myrhobeg <- min(abs(spar)) # JN 160107 (3), 160125 (5)
if ((myrhobeg < 1e-8) || ! is.finite(myrhobeg) ) myrhobeg <- 0.5
mcontrol$rhobeg <- myrhobeg # to avoid 0 when parameters 0
if (control$have.bounds) {
warning("Cannot use uobyqa with bounds")
if (control$trace > 0) cat("Cannot use uobyqa with bounds\n")
ans<-list() # ans not yet defined, so set as list
ans$convergence <- 9999 # failed in run
ans$value <- control$badval
ans$par<-rep(NA,npar)
ans$counts[1] <- NA # save function and gradient count information
ans$counts[2] <- NA # save function and gradient count information
ans$message <- NULL
ans$hessian <- NULL
## return(ans)
}
ans <- try(minqa::uobyqa(par=spar, fn=efn, control=mcontrol,...))
if (! inherits(ans, "try-error")) {
ans$convergence <- 0
# if (ans$feval > mcontrol$maxfun) {
# ans$convergence <- 1 # too many evaluations
# }
ans$convergence <- ans$ierr
ans$ierr <- NULL
ans$message <- ans$msg
ans$msg <- NULL
ans$counts[1] <- ans$feval
ans$counts[2] <- NA
ans$feval <- NULL
ans$value<-ans$fval
ans$par <- ans$par*pscale
ans$fval <- NULL # not used
ans$hessian <- NULL
} else {
if (control$trace > 0) cat("uobyqa failed for current problem \n")
ans<-list() # ans not yet defined, so set as list
ans$convergence <- 9999 # failed in run
ans$value <- control$badval
ans$par<-rep(NA,npar)
ans$counts[1] <- NA # save function and gradient count information
ans$counts[2] <- NA # save function and gradient count information
ans$message <- NULL
ans$hessian <- NULL
}
ans <- unclass(ans) # because minqa does strange things!
## return(ans)
} ## end if using uobyqa
## --------------------------------------------
else if (method == "newuoa") {# Use newuoa routine from minqa package
if (control$trace > 1) cat("Trying newuoa\n")
mcontrol$maxfun <- control$maxfeval
mcontrol$iprint <- control$trace
myrhobeg <- min(abs(spar)) # JN 160107 (3), 160125 (5)
if ((myrhobeg < 1e-8) || ! is.finite(myrhobeg) ) myrhobeg <- 0.5
mcontrol$rhobeg <- myrhobeg # to avoid 0 when parameters 0
if (control$have.bounds) {
warning("Cannot use newuoa with bounds")
if (control$trace > 0) cat("Cannot use newuoa with bounds\n")
ans<-list() # ans not yet defined, so set as list
ans$convergence <- 9999 # failed in run
ans$value <- control$badval
ans$par<-rep(NA,npar)
ans$counts[1] <- NA # save function and gradient count information
ans$counts[2] <- NA # save function and gradient count information
ans$message <- NULL
ans$hessian <- NULL
## return(ans)
}
ans <- try(minqa::newuoa(par=spar, fn=efn, control=mcontrol,...))
if (! inherits(ans, "try-error")) {
ans$convergence <- 0
# if (ans$feval > mcontrol$maxfun) {
# ans$convergence <- 1 # too many evaluations
# }
ans$convergence <- ans$ierr
ans$ierr <- NULL
ans$message <- ans$msg
ans$msg <- NULL
ans$counts[1] <- ans$feval
ans$feval <- NULL
ans$counts[2] <- NA
ans$value<-ans$fval
ans$par <- ans$par*pscale
ans$fval <- NULL # not used
ans$hessian <- NULL
} else {
if (control$trace > 0) cat("bobyqa failed for current problem \n")
ans<-list() # ans not yet defined, so set as list
ans$convergence <- 9999 # failed in run
ans$value <- control$badval
ans$par<-rep(NA,npar)
ans$counts[1] <- NA # save function and gradient count information
ans$counts[2] <- NA # save function and gradient count information
ans$message <- NULL
ans$hessian <- NULL
}
ans <- unclass(ans) # because minqa does strange things!
## return(ans)
} ## end if using newuoa
## --------------------------------------------
else if (method == "nmkb") {# Use nmkb routine from dfoptim package
if (any(par == lower) || any(par==upper)) {
if (control$trace>0) cat("nmkb cannot start if on any bound \n")
warning("nmkb() cannot be started if any parameter on a bound")
ans <- list() # ans not yet defined, so set as list
ans$value <- control$badval
ans$par <- rep(NA,npar)
ans$convergence <- 9999 # failed in run - ?? consider special code for nmkb on bounds
ans$fevals <- NA
ans$gevals <- NA
ans$nitns <- NA
ans$hessian <- NULL
} else { # ok to proceed with nmkb()
if (! is.null(control$maxit)) {
mcontrol$maxfeval <- control$maxit
} else {
mcontrol$maxfeval <- 5000*round(sqrt(npar+1)) # ?? default at 100215, but should it be changed?
}
if (control$trace > 0) { mcontrol$trace <- TRUE } # logical needed, not integer
else { mcontrol$trace<-FALSE }
if (control$have.bounds) {
ans <- try(dfoptim::nmkb(par=spar, fn=efn, lower = slower,
upper = supper, control=mcontrol, ...))
} else {# 170919 explicit package in call
ans <- try(dfoptim::nmk(par=spar, fn=efn, control=mcontrol, ...))
}
if (control$trace > 1) {
cat("Outputting ans for nmkb:\n")
print(ans)
}
if (! inherits(ans, "try-error")) {
ans$value <- as.numeric(ans$value)
ans$par <- ans$par*pscale
ans$counts[1] <- ans$feval
ans$feval <- NULL
ans$counts[2] <- NA
ans$nitns <- NA # not used
# What about 'restarts' and 'message'??
warning(ans$message," Restarts for stagnation =",ans$restarts)
ans$restarts <- NULL
ans$hessian <- NULL
} else {
if (control$trace>0) cat("nmkb failed for current problem \n")
ans <- list(fevals=NA) # ans not yet defined, so set as list
ans$value <- control$badval
ans$par <- rep(NA,npar)
ans$counts[1] <- NA
ans$counts[2] <- NA
ans$convergence <- 9999 # failed in run
ans$message<-"Failed"
ans$hessian <- NULL
}
} # end of check for parameter on bound
## return(ans)
} ## end if using nmkb
## --------------------------------------------
else if (method == "hjkb") {# Use hjkb routine from dfoptim package
if (control$trace > 0) {
mcontrol$info <- TRUE # logical needed, not integer
} else { mcontrol$info <- FALSE }
mcontrol$maxfeval <- control$maxfeval
if (control$have.bounds) {
ans <- try(dfoptim::hjkb(par=spar, fn=efn, lower = slower,
upper = supper, control=mcontrol, ...))
} else {
ans <- try(dfoptim::hjk(par=spar, fn=efn, control=mcontrol, ...))
}
if (! inherits(ans, "try-error")) {
ans$value <- as.numeric(ans$value)
ans$par <- ans$par*pscale
ans$counts[1] <- ans$feval
ans$feval <- NULL
ans$counts[2] <- NA
ans$nitns <- NULL # not used
ans$restarts <- NULL
ans$hessian <- NULL
ans$nitns <- NULL # loss of information
} else {
if (control$trace>0) cat("hjkb failed for current problem \n")
ans <- list(value=control$badval, par=rep(NA,npar), message="Failed",
convergence=9999)
ans$counts[1]<- NA
ans$counts[2]<- NA
ans$hessian <- NULL
}
## return(ans)
} ## end if using hjkb
## --------------------------------------------
else if (method == "lbfgsb3c") {# Use 2011 L-BFGS-B wrapper
if (control$trace > 1) cat("lbfgsb3c\n")
mcontrol$trace <- control$trace
# 170924 no longer needed
## if (control$trace < 1) {mcontrol$iprint <- -1} else {mcontrol$iprint <- control$trace}
if (control$trace > 0) cat("lbfgsb3c:control$have.bounds =",control$have.bounds,"\n")
if (control$have.bounds) {
slower <- lower/pscale
supper <- upper/pscale
ans <- try(lbfgsb3c::lbfgsb3c(par=spar, fn=efn, gr=egr, lower = slower,
upper = supper, control=mcontrol, ...)) # explicit pkg in call 170919
} else {
ans <- try(lbfgsb3c::lbfgsb3c(par=spar, fn=efn, gr=egr, control=mcontrol, ...))
}
if (! inherits(ans, "try-error")) {
## Need to check these carefully?? -- changed 20191202 for lbfgsb3c
# ans$convergence <- 0
ans$par <- ans$par*pscale
# ans$prm <- NULL
# ans$value<-as.numeric(ans$f)
# ans$f <- NULL
# ans$counts[1] <- ans$info$isave[34]
# ans$counts[2] <- ans$counts[1]
# ans$info <- NULL ## Note -- throwing away a lot of information
# ans$g <- NULL ## perhaps keep -- but how??
# ans$hessian <- NULL
# ans$message <- NA
ans$niter <- NULL # loss of information
} else {
if (control$trace>0) cat("lbfgsb3c failed for current problem \n")
ans<-list(fevals=NA) # ans not yet defined, so set as list
ans$value <- control$badval
ans$par<-rep(NA,npar)
ans$convergence<-9999 # failed in run
ans$counts[1] <- NA
ans$counts[1] <- NA
# ans$hessian <- NULL
# ans$message <- NA
}
## return(ans)
} ## end if using lbfgsb3c
## --------------------------------------------
else if (method == "lbfgs") {# Use unconstrained method from lbfgs package
if (control$trace > 1) cat("lbfgs\n")
if (control$trace < 1) {invisible <- 1} else {invisible <- 0}
if (control$trace > 1) cat("lbfgs:control$have.bounds =",control$have.bounds,"\n")
ans <- list() # to define the answer object
errmsg <- NA
class(ans)[1] <- "undefined" # initial setting
## cat("in lbfgs section, control$have.bounds=",control$have.bounds,"\n")
if (control$have.bounds) {
cat("control$have.bounds seems TRUE\n")
if (control$trace > 0) cat("lbfgs::lbfgs cannot handle bounds\n")
errmsg <- "lbfgs::lbfgs cannot handle bounds\n"
## stop("lbfgs::lbfgs tried with bounds")
class(ans)[1] <- "try-error"
}
if (is.null(egr)) {
if (control$trace > 0) cat("lbfgs::lbfgs MUST have gradient provided\n")
errmsg <- "lbfgs::lbfgs MUST have gradient provided\n"
class(ans)[1] <- "try-error"
}
if (inherits(ans, "undefined")){
dotstuff <- list(...)
# cat("dotstuff:\n")
# print(dotstuff)
dotstuff$pscale <- pscale
dotstuff$fnscale <- control$fnscale
eopt <- list2env(dotstuff) # put it in an environment
# print(ls(eopt))
ans <- try(lbfgs::lbfgs(efn, egr, vars=spar,
environment=eopt, invisible=invisible))
}
# cat("interim answer:")
# print(ans)
if (! inherits(ans, "try-error")) {
## Need to check these carefully??
ans$par <- ans$par*pscale
ans$value <- ans$value*control$fnscale
ans$counts[1] <- NA # lbfgs seems to have no output like this
ans$counts[2] <- NA
} else {
if (control$trace>0) cat("lbfgs failed for current problem \n")
ans<-list() # ans not yet defined, so set as list
ans$value <- control$badval
ans$par <- rep(NA,npar)
ans$convergence <- 9999 # failed in run
if (is.null(egr)) ans$convergence <- 9998 # no gradient
ans$counts[1] <- NA
ans$counts[1] <- NA
ans$hessian <- NULL
if (! is.na(errmsg)) ans$message <- errmsg
}
## return(ans)
} ## end if using lbfgs
## --------------------------------------------
else if (method == "subplex") {# Use unconstrained method from subplex package
if (control$trace > 1) cat("subplex\n")
if (control$trace < 1) {invisible <- 1} else {invisible <- 0}
if (control$trace > 1) cat("subplex:control$have.bounds =",control$have.bounds,"\n")
ans <- list() # to define the answer object
if (control$trace > 0) warning("subplex has no trace mechanism")
class(ans)[1] <- "undefined" # initial setting
if (control$have.bounds) {
cat("control$have.bounds seems TRUE\n")
if (control$trace > 0) cat("subplex::subplex cannot handle bounds\n")
stop("subplex::subplex cannot handle bounds")
}
if (class(ans)[1] == "undefined"){
ans <- try(subplex::subplex(par=spar, fn=efn, control=list(maxit=control$maxfeval)))
}
if (!inherits(ans, "try-error") && (ans$convergence != -2)) {
## Need to check these carefully??
ans$par <- ans$par*pscale
ans$value <- ans$value*control$fnscale
ans$counts[1] <- ans$count
ans$counts[2] <- NA
ans$count <- NULL
ccode <- ans$convergence
ans$convergence <- 9999
ans$message <- paste("subplex:",ans$message)
if ((ccode == 0) || (ccode == 1)) {
ans$convergence <- 0
if (ccode == 0) { ans$message <- "subplex: success" }
else { ans$message <- "subplex: Limit of precision reached" }
} # converged OK
else {if (ccode == -1) {
ans$convergence <- 1
ans$message <- "subplex: function evaluation limit reached"
} # effort limit
}
} else {
if (ccode == -2) {
ans$convergence <- 20
}
else { ans$convergence <- 9999}
ans$value <- control$badval
ans$par <- rep(NA,npar)
ans$counts[1] <- NA
ans$counts[2] <- NA
ans$hessian <- NULL
}
} ## end if using subplex
## --------------------------------------------
## END OF optimrx extra methods
# --- UNDEFINED METHOD ---
else { errmsg<-paste("UNDEFINED METHOD:", method, sep='')
stop(errmsg, call.=FALSE)
}
# Exit from routine
ans$value <- ans$value * control$fnscale # reset for maximum
if (savehess) { # compute hessian
if (is.null(orig.gr)) {
hess <- hessian(orig.fn, ans$par, ...) # from numDeriv
} else {
hess <- jacobian(orig.gr, ans$par, ...) # use Jacobian of gradient
}
} else { hess <- NULL } # to ensure it is defined
ans$hessian <- hess
ans # last statement of routine
} ## end of optimrx
|