File: SNewton.R

package info (click to toggle)
r-cran-optimx 2020-4.2%2Bdfsg-2
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 1,492 kB
  • sloc: sh: 21; makefile: 5
file content (371 lines) | stat: -rw-r--r-- 10,658 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
## -----------------------------------------------------------------------------
x0<-c(1,2,3,4)
fnt <- function(x, fscale=10){
  yy <- length(x):1
  val <- sum((yy*x)^2)*fscale
}
grt <- function(x, fscale=10){
  nn <- length(x)
  yy <- nn:1
  #    gg <- rep(NA,nn)
  gg <- 2*(yy^2)*x*fscale
  gg
}

hesst <- function(x, fscale=10){
  nn <- length(x)
  yy <- nn:1
  hh <- diag(2*yy^2*fscale)
  hh
}

require(optimx)
sessionInfo() # included to ensure we know which version of optimx in use
t1 <- snewton(x0, fnt, grt, hesst, control=list(trace=0), fscale=3.0)
print(t1)
# we can also use nlm and nlminb
fght <- function(x, fscale=10){
  ## combine f, g and h into single function for nlm
     ff <- fnt(x, fscale)
     gg <- grt(x, fscale)
     hh <- hesst(x, fscale)
     attr(ff, "gradient") <- gg
     attr(ff, "hessian") <- hh
     ff
}

t1nlm <- nlm(fght, x0, fscale=3.0, hessian=TRUE, print.level=0)
print(t1nlm)

## BUT ... it looks like nlminb is NOT using a true Newton-type method
t1nlminb <- nlminb(x0, fnt, gradient=grt, hessian=hesst, fscale=3.0, 
                   control=list(trace=0))
print(t1nlminb)

# and call them from optimx (i.e., test this gives same results)
t1so <-  optimr(x0, fnt, grt, hess=hesst, method="snewton", fscale=3.0, 
                 control=list(trace=0))
proptimr(t1so)

t1nlmo <- optimr(x0, fnt, grt, hess=hesst, method="nlm", fscale=3.0, 
                 control=list(trace=0))
proptimr(t1nlmo)

tst <- try(t1nlminbo <- optimr(x0, fnt, grt, hess=hesst, method="nlminb", 
                               fscale=3.0, control=list(trace=0)))
if (class(tst) == "try-error"){
    cat("try-error on attempt to run nlminb in optimr()\n")
} else { proptimr(t1nlminbo) }


## -----------------------------------------------------------------------------
require(optimx)
#Rosenbrock banana valley function
f <- function(x){
return(100*(x[2] - x[1]*x[1])^2 + (1-x[1])^2)
}
#gradient
gr <- function(x){
return(c(-400*x[1]*(x[2] - x[1]*x[1]) - 2*(1-x[1]), 200*(x[2] - x[1]*x[1])))
}
#Hessian
h <- function(x) {
a11 <- 2 - 400*x[2] + 1200*x[1]*x[1]; a21 <- -400*x[1]
return(matrix(c(a11, a21, a21, 200), 2, 2))
}
x0 <- c(-1.2, 1)
# sink("mbrn1-170408.txt", split=TRUE)
t1 <- snewton(x0, fn=f, gr=gr, hess=h, control=list(trace=0))
print(t1)

# we can also use nlm and nlminb
fght <- function(x){
  ## combine f, g and h into single function for nlm
     ff <- f(x)
     gg <- gr(x)
     hh <- h(x)
     attr(ff, "gradient") <- gg
     attr(ff, "hessian") <- hh
     ff
}

# COULD TRY: t1nlm <- nlm(fght, x0, hessian=TRUE, print.level=2, iterlim=10000)
t1nlmo <- optimr(x0, f, gr, hess=h, method="nlm", control=list(trace=0))
proptimr(t1nlmo)

t1so <- optimr(x0, f, gr, hess=h, method="snewton", control=list(trace=0))
proptimr(t1so)
  
t1smo <-  optimr(x0, f, gr, hess=h, method="snewtonm", control=list(trace=0))
proptimr(t1smo)


## Again, nlminb probably not using hessian
tst <- try(t1nlminbo <- optimr(x0, f, gr, hess=h, method="nlminb", 
                               control=list(trace=0)))
if (class(tst) == "try-error"){
    cat("try-error on attempt to run nlminb in optimr()\n")
} else { proptimr(t1nlminbo) }




## -----------------------------------------------------------------------------
#Example: Wood function
#
wood.f <- function(x){
  res <- 100*(x[1]^2-x[2])^2+(1-x[1])^2+90*(x[3]^2-x[4])^2+(1-x[3])^2+
    10.1*((1-x[2])^2+(1-x[4])^2)+19.8*(1-x[2])*(1-x[4])
  return(res)
}
#gradient:
wood.g <- function(x){
  g1 <- 400*x[1]^3-400*x[1]*x[2]+2*x[1]-2
  g2 <- -200*x[1]^2+220.2*x[2]+19.8*x[4]-40
  g3 <- 360*x[3]^3-360*x[3]*x[4]+2*x[3]-2
  g4 <- -180*x[3]^2+200.2*x[4]+19.8*x[2]-40
  return(c(g1,g2,g3,g4))
}
#hessian:
wood.h <- function(x){
  h11 <- 1200*x[1]^2-400*x[2]+2;    h12 <- -400*x[1]; h13 <- h14 <- 0
  h22 <- 220.2; h23 <- 0;    h24 <- 19.8
  h33 <- 1080*x[3]^2-360*x[4]+2;    h34 <- -360*x[3]
  h44 <- 200.2
  H <- matrix(c(h11,h12,h13,h14,h12,h22,h23,h24,
                h13,h23,h33,h34,h14,h24,h34,h44),ncol=4)
  return(H)
}

wood.fgh <- function(x){
      fval <- wood.f(x)
      gval <- wood.g(x)
      hval <- wood.h(x)
      attr(fval,"gradient") <- gval
      attr(fval,"hessian")<- hval
      fval
}
 
#################################################
x0 <- c(-3,-1,-3,-1) # Wood standard start

require(optimx)
# In 100 iterations, not converged
t1nlm <- nlm(wood.fgh, x0, print.level=0)
print(t1nlm)
# But both newton approaches do work
wd <- snewton(x0, fn=wood.f, gr=wood.g, hess=wood.h, control=list(trace=0))
print(wd)
wdm <- snewtonm(x0, fn=wood.f, gr=wood.g, hess=wood.h, control=list(trace=0))
print(wdm)

## AND again nlminb not likely using hessian information
## t1nlminb <- nlminb(x0, wood.f, gradient=wood.g, hess=wood.h, control=list(trace=0))
## print(t1nlminb)
# and call them from optimx (i.e., test this gives same results)

# But optimr uses a larger iteration limit, and gets to solution
t1nlmo <- optimr(x0, wood.f, wood.g, hess=wood.h, method="nlm", control=list(trace=0))
proptimr(t1nlmo)

tst<-try(t1nlminbo <- optimr(x0, wood.f, wood.g, hess=wood.h, method="nlminb", control=list(trace=0)))
if (class(tst) == "try-error"){
    cat("try-error on attempt to run nlminb in optimr()\n")
} else { proptimr(t1nlminbo) }

## -----------------------------------------------------------------------------
# genrosa function code -- attempts to match the rosenbrock at gs=100 and x=c(-1.2,1)
genrosa.f<- function(x, gs=NULL){ # objective function
## One generalization of the Rosenbrock banana valley function (n parameters)
	n <- length(x)
        if(is.null(gs)) { gs=100.0 }
        # Note do not at 1.0 so min at 0
	fval<-sum (gs*(x[1:(n-1)]^2 - x[2:n])^2 + (x[1:(n-1)] - 1)^2)
}

genrosa.g <- function(x, gs=NULL){
# vectorized gradient for genrose.f
# Ravi Varadhan 2009-04-03
	n <- length(x)
        if(is.null(gs)) { gs=100.0 }
	gg <- as.vector(rep(0, n))
	tn <- 2:n
	tn1 <- tn - 1
	z1 <- x[tn] - x[tn1]^2
	z2 <- 1 - x[tn1]
        # f = gs*z1*z1 + z2*z2
	gg[tn] <- 2 * (gs * z1)
	gg[tn1] <- gg[tn1] - 4 * gs * x[tn1] * z1 - 2 *z2 
	return(gg)
}

genrosa.h <- function(x, gs=NULL) { ## compute Hessian
   if(is.null(gs)) { gs=100.0 }
	n <- length(x)
	hh<-matrix(rep(0, n*n),n,n)
	for (i in 2:n) {
		z1<-x[i]-x[i-1]*x[i-1]
#		z2<-1.0 - x[i-1]
                hh[i,i]<-hh[i,i]+2.0*(gs+1.0)
                hh[i-1,i-1]<-hh[i-1,i-1]-4.0*gs*z1-4.0*gs*x[i-1]*(-2.0*x[i-1])
                hh[i,i-1]<-hh[i,i-1]-4.0*gs*x[i-1]
                hh[i-1,i]<-hh[i-1,i]-4.0*gs*x[i-1]
	}
        return(hh)
}

require(optimx)
cat("Generalized Rosenbrock tests\n")

cat("original n and x0")

x0 <- c(-1.2, 1)
solorig <- snewton(x0, genrosa.f, genrosa.g, genrosa.h)
print(solorig)
print(eigen(solorig$Hess)$values)
solorigm <- snewtonm(x0, genrosa.f, genrosa.g, genrosa.h)
print(solorigm)
print(eigen(solorigm$Hess)$values)

cat("Start with 50 values of pi and scale factor 10\n")
x0 <- rep(pi, 50)
sol50pi <- optimr(x0, genrosa.f, genrosa.g, genrosa.h, method="snewton", gs=10)
proptimr(sol50pi)
hhi <- genrosa.h(sol50pi$par, gs=10)
print(eigen(hhi)$values)
sol50pim <- optimr(x0, genrosa.f, genrosa.g, genrosa.h, method="snewtonm", gs=10)
proptimr(sol50pim)
hhm <- genrosa.h(sol50pim$par, gs=10)
print(eigen(hhm)$values)

## -----------------------------------------------------------------------------
## Optimization test function HOBBS
## ?? refs (put in .doc??)
## Nash and Walker-Smith (1987, 1989) ...
require(optimx)

hobbs.f<- function(x){ # # Hobbs weeds problem -- function
    if (abs(12*x[3]) > 500) { # check computability
       fbad<-.Machine$double.xmax
       return(fbad)
    }
    res<-hobbs.res(x)
    f<-sum(res*res)
}


hobbs.res<-function(x){ # Hobbs weeds problem -- residual
# This variant uses looping
    if(length(x) != 3) stop("hobbs.res -- parameter vector n!=3")
    y<-c(5.308, 7.24, 9.638, 12.866, 17.069, 23.192, 31.443, 38.558, 50.156, 62.948,
         75.995, 91.972)
    t<-1:12
    if(abs(12*x[3])>50) {
       res<-rep(Inf,12)
    } else {
       res<-x[1]/(1+x[2]*exp(-x[3]*t)) - y
    }
}

hobbs.jac<-function(x){ # Jacobian of Hobbs weeds problem
   jj<-matrix(0.0, 12, 3)
   t<-1:12
    yy<-exp(-x[3]*t)
    zz<-1.0/(1+x[2]*yy)
     jj[t,1] <- zz
     jj[t,2] <- -x[1]*zz*zz*yy
     jj[t,3] <- x[1]*zz*zz*yy*x[2]*t
   return(jj)
}

hobbs.g<-function(x){ # gradient of Hobbs weeds problem
    # NOT EFFICIENT TO CALL AGAIN
    jj<-hobbs.jac(x)
    res<-hobbs.res(x)
    gg<-as.vector(2.*t(jj) %*% res)
    return(gg)
}


hobbs.rsd<-function(x) { # Jacobian second derivative
    rsd<-array(0.0, c(12,3,3))
    t<-1:12
    yy<-exp(-x[3]*t)
    zz<-1.0/(1+x[2]*yy)
    rsd[t,1,1]<- 0.0
    rsd[t,2,1]<- -yy*zz*zz
    rsd[t,1,2]<- -yy*zz*zz
    rsd[t,2,2]<- 2.0*x[1]*yy*yy*zz*zz*zz
    rsd[t,3,1]<- t*x[2]*yy*zz*zz
    rsd[t,1,3]<- t*x[2]*yy*zz*zz
    rsd[t,3,2]<- t*x[1]*yy*zz*zz*(1-2*x[2]*yy*zz)
    rsd[t,2,3]<- t*x[1]*yy*zz*zz*(1-2*x[2]*yy*zz)
##    rsd[t,3,3]<- 2*t*t*x[1]*x[2]*x[2]*yy*yy*zz*zz*zz
    rsd[t,3,3]<- -t*t*x[1]*x[2]*yy*zz*zz*(1-2*yy*zz*x[2])
    return(rsd)
}


hobbs.h <- function(x) { ## compute Hessian
#   cat("Hessian not yet available\n")
#   return(NULL)
    H<-matrix(0,3,3)
    res<-hobbs.res(x)
    jj<-hobbs.jac(x)
    rsd<-hobbs.rsd(x)
##    H<-2.0*(t(res) %*% rsd + t(jj) %*% jj)
    for (j in 1:3) {
       for (k in 1:3) {
          for (i in 1:12) {
             H[j,k]<-H[j,k]+res[i]*rsd[i,j,k]
          }
       }
    }
    H<-2*(H + t(jj) %*% jj)
    return(H)
}

require(optimx)
x0 <- c(200, 50, .3)
cat("Start for Hobbs:")
print(x0)
solx0 <- snewton(x0, hobbs.f, hobbs.g, hobbs.h)
## Note that we exceed count limit, but have answer
print(solx0)
print(eigen(solx0$Hess)$values)
## Note that we exceed count limit, but have answer

## Setting relative check offset larger gets quicker convergence
solx0a <- snewton(x0, hobbs.f, hobbs.g, hobbs.h, control=list(offset=1000.))
print(solx0a)


x1s <- c(100, 10, .1)
cat("Start for Hobbs:")
print(x1s)
solx1s <- snewton(x1s, hobbs.f, hobbs.g, hobbs.h, control=list(trace=0))
print(solx1s)
print(eigen(solx1s$Hess)$values)
solx1m <- snewton(x1s, hobbs.f, hobbs.g, hobbs.h, control=list(trace=0))
print(solx1m)
print(eigen(solx1m$Hess)$values)

cat("Following test fails in snewton with ERROR -- Why?\n")
x3 <- c(1, 1, 1)
cat("Start for Hobbs:")
print(x3)
ftest <- try(solx3 <- snewton(x3, hobbs.f, hobbs.g, hobbs.h, control=list(trace=0)))
if (class(ftest) != "try-error") {
   print(solx3)
   print(eigen(solx3$Hess)$values)
}
cat("But Marquardt variant succeeds\n")
solx3m <- snewtonm(x3, hobbs.f, hobbs.g, hobbs.h, control=list(trace=0))
print(solx3m)
print(eigen(solx3m$Hess)$values)



# we can also use nlm and nlminb and call them from optimx