1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371
|
## -----------------------------------------------------------------------------
x0<-c(1,2,3,4)
fnt <- function(x, fscale=10){
yy <- length(x):1
val <- sum((yy*x)^2)*fscale
}
grt <- function(x, fscale=10){
nn <- length(x)
yy <- nn:1
# gg <- rep(NA,nn)
gg <- 2*(yy^2)*x*fscale
gg
}
hesst <- function(x, fscale=10){
nn <- length(x)
yy <- nn:1
hh <- diag(2*yy^2*fscale)
hh
}
require(optimx)
sessionInfo() # included to ensure we know which version of optimx in use
t1 <- snewton(x0, fnt, grt, hesst, control=list(trace=0), fscale=3.0)
print(t1)
# we can also use nlm and nlminb
fght <- function(x, fscale=10){
## combine f, g and h into single function for nlm
ff <- fnt(x, fscale)
gg <- grt(x, fscale)
hh <- hesst(x, fscale)
attr(ff, "gradient") <- gg
attr(ff, "hessian") <- hh
ff
}
t1nlm <- nlm(fght, x0, fscale=3.0, hessian=TRUE, print.level=0)
print(t1nlm)
## BUT ... it looks like nlminb is NOT using a true Newton-type method
t1nlminb <- nlminb(x0, fnt, gradient=grt, hessian=hesst, fscale=3.0,
control=list(trace=0))
print(t1nlminb)
# and call them from optimx (i.e., test this gives same results)
t1so <- optimr(x0, fnt, grt, hess=hesst, method="snewton", fscale=3.0,
control=list(trace=0))
proptimr(t1so)
t1nlmo <- optimr(x0, fnt, grt, hess=hesst, method="nlm", fscale=3.0,
control=list(trace=0))
proptimr(t1nlmo)
tst <- try(t1nlminbo <- optimr(x0, fnt, grt, hess=hesst, method="nlminb",
fscale=3.0, control=list(trace=0)))
if (class(tst) == "try-error"){
cat("try-error on attempt to run nlminb in optimr()\n")
} else { proptimr(t1nlminbo) }
## -----------------------------------------------------------------------------
require(optimx)
#Rosenbrock banana valley function
f <- function(x){
return(100*(x[2] - x[1]*x[1])^2 + (1-x[1])^2)
}
#gradient
gr <- function(x){
return(c(-400*x[1]*(x[2] - x[1]*x[1]) - 2*(1-x[1]), 200*(x[2] - x[1]*x[1])))
}
#Hessian
h <- function(x) {
a11 <- 2 - 400*x[2] + 1200*x[1]*x[1]; a21 <- -400*x[1]
return(matrix(c(a11, a21, a21, 200), 2, 2))
}
x0 <- c(-1.2, 1)
# sink("mbrn1-170408.txt", split=TRUE)
t1 <- snewton(x0, fn=f, gr=gr, hess=h, control=list(trace=0))
print(t1)
# we can also use nlm and nlminb
fght <- function(x){
## combine f, g and h into single function for nlm
ff <- f(x)
gg <- gr(x)
hh <- h(x)
attr(ff, "gradient") <- gg
attr(ff, "hessian") <- hh
ff
}
# COULD TRY: t1nlm <- nlm(fght, x0, hessian=TRUE, print.level=2, iterlim=10000)
t1nlmo <- optimr(x0, f, gr, hess=h, method="nlm", control=list(trace=0))
proptimr(t1nlmo)
t1so <- optimr(x0, f, gr, hess=h, method="snewton", control=list(trace=0))
proptimr(t1so)
t1smo <- optimr(x0, f, gr, hess=h, method="snewtonm", control=list(trace=0))
proptimr(t1smo)
## Again, nlminb probably not using hessian
tst <- try(t1nlminbo <- optimr(x0, f, gr, hess=h, method="nlminb",
control=list(trace=0)))
if (class(tst) == "try-error"){
cat("try-error on attempt to run nlminb in optimr()\n")
} else { proptimr(t1nlminbo) }
## -----------------------------------------------------------------------------
#Example: Wood function
#
wood.f <- function(x){
res <- 100*(x[1]^2-x[2])^2+(1-x[1])^2+90*(x[3]^2-x[4])^2+(1-x[3])^2+
10.1*((1-x[2])^2+(1-x[4])^2)+19.8*(1-x[2])*(1-x[4])
return(res)
}
#gradient:
wood.g <- function(x){
g1 <- 400*x[1]^3-400*x[1]*x[2]+2*x[1]-2
g2 <- -200*x[1]^2+220.2*x[2]+19.8*x[4]-40
g3 <- 360*x[3]^3-360*x[3]*x[4]+2*x[3]-2
g4 <- -180*x[3]^2+200.2*x[4]+19.8*x[2]-40
return(c(g1,g2,g3,g4))
}
#hessian:
wood.h <- function(x){
h11 <- 1200*x[1]^2-400*x[2]+2; h12 <- -400*x[1]; h13 <- h14 <- 0
h22 <- 220.2; h23 <- 0; h24 <- 19.8
h33 <- 1080*x[3]^2-360*x[4]+2; h34 <- -360*x[3]
h44 <- 200.2
H <- matrix(c(h11,h12,h13,h14,h12,h22,h23,h24,
h13,h23,h33,h34,h14,h24,h34,h44),ncol=4)
return(H)
}
wood.fgh <- function(x){
fval <- wood.f(x)
gval <- wood.g(x)
hval <- wood.h(x)
attr(fval,"gradient") <- gval
attr(fval,"hessian")<- hval
fval
}
#################################################
x0 <- c(-3,-1,-3,-1) # Wood standard start
require(optimx)
# In 100 iterations, not converged
t1nlm <- nlm(wood.fgh, x0, print.level=0)
print(t1nlm)
# But both newton approaches do work
wd <- snewton(x0, fn=wood.f, gr=wood.g, hess=wood.h, control=list(trace=0))
print(wd)
wdm <- snewtonm(x0, fn=wood.f, gr=wood.g, hess=wood.h, control=list(trace=0))
print(wdm)
## AND again nlminb not likely using hessian information
## t1nlminb <- nlminb(x0, wood.f, gradient=wood.g, hess=wood.h, control=list(trace=0))
## print(t1nlminb)
# and call them from optimx (i.e., test this gives same results)
# But optimr uses a larger iteration limit, and gets to solution
t1nlmo <- optimr(x0, wood.f, wood.g, hess=wood.h, method="nlm", control=list(trace=0))
proptimr(t1nlmo)
tst<-try(t1nlminbo <- optimr(x0, wood.f, wood.g, hess=wood.h, method="nlminb", control=list(trace=0)))
if (class(tst) == "try-error"){
cat("try-error on attempt to run nlminb in optimr()\n")
} else { proptimr(t1nlminbo) }
## -----------------------------------------------------------------------------
# genrosa function code -- attempts to match the rosenbrock at gs=100 and x=c(-1.2,1)
genrosa.f<- function(x, gs=NULL){ # objective function
## One generalization of the Rosenbrock banana valley function (n parameters)
n <- length(x)
if(is.null(gs)) { gs=100.0 }
# Note do not at 1.0 so min at 0
fval<-sum (gs*(x[1:(n-1)]^2 - x[2:n])^2 + (x[1:(n-1)] - 1)^2)
}
genrosa.g <- function(x, gs=NULL){
# vectorized gradient for genrose.f
# Ravi Varadhan 2009-04-03
n <- length(x)
if(is.null(gs)) { gs=100.0 }
gg <- as.vector(rep(0, n))
tn <- 2:n
tn1 <- tn - 1
z1 <- x[tn] - x[tn1]^2
z2 <- 1 - x[tn1]
# f = gs*z1*z1 + z2*z2
gg[tn] <- 2 * (gs * z1)
gg[tn1] <- gg[tn1] - 4 * gs * x[tn1] * z1 - 2 *z2
return(gg)
}
genrosa.h <- function(x, gs=NULL) { ## compute Hessian
if(is.null(gs)) { gs=100.0 }
n <- length(x)
hh<-matrix(rep(0, n*n),n,n)
for (i in 2:n) {
z1<-x[i]-x[i-1]*x[i-1]
# z2<-1.0 - x[i-1]
hh[i,i]<-hh[i,i]+2.0*(gs+1.0)
hh[i-1,i-1]<-hh[i-1,i-1]-4.0*gs*z1-4.0*gs*x[i-1]*(-2.0*x[i-1])
hh[i,i-1]<-hh[i,i-1]-4.0*gs*x[i-1]
hh[i-1,i]<-hh[i-1,i]-4.0*gs*x[i-1]
}
return(hh)
}
require(optimx)
cat("Generalized Rosenbrock tests\n")
cat("original n and x0")
x0 <- c(-1.2, 1)
solorig <- snewton(x0, genrosa.f, genrosa.g, genrosa.h)
print(solorig)
print(eigen(solorig$Hess)$values)
solorigm <- snewtonm(x0, genrosa.f, genrosa.g, genrosa.h)
print(solorigm)
print(eigen(solorigm$Hess)$values)
cat("Start with 50 values of pi and scale factor 10\n")
x0 <- rep(pi, 50)
sol50pi <- optimr(x0, genrosa.f, genrosa.g, genrosa.h, method="snewton", gs=10)
proptimr(sol50pi)
hhi <- genrosa.h(sol50pi$par, gs=10)
print(eigen(hhi)$values)
sol50pim <- optimr(x0, genrosa.f, genrosa.g, genrosa.h, method="snewtonm", gs=10)
proptimr(sol50pim)
hhm <- genrosa.h(sol50pim$par, gs=10)
print(eigen(hhm)$values)
## -----------------------------------------------------------------------------
## Optimization test function HOBBS
## ?? refs (put in .doc??)
## Nash and Walker-Smith (1987, 1989) ...
require(optimx)
hobbs.f<- function(x){ # # Hobbs weeds problem -- function
if (abs(12*x[3]) > 500) { # check computability
fbad<-.Machine$double.xmax
return(fbad)
}
res<-hobbs.res(x)
f<-sum(res*res)
}
hobbs.res<-function(x){ # Hobbs weeds problem -- residual
# This variant uses looping
if(length(x) != 3) stop("hobbs.res -- parameter vector n!=3")
y<-c(5.308, 7.24, 9.638, 12.866, 17.069, 23.192, 31.443, 38.558, 50.156, 62.948,
75.995, 91.972)
t<-1:12
if(abs(12*x[3])>50) {
res<-rep(Inf,12)
} else {
res<-x[1]/(1+x[2]*exp(-x[3]*t)) - y
}
}
hobbs.jac<-function(x){ # Jacobian of Hobbs weeds problem
jj<-matrix(0.0, 12, 3)
t<-1:12
yy<-exp(-x[3]*t)
zz<-1.0/(1+x[2]*yy)
jj[t,1] <- zz
jj[t,2] <- -x[1]*zz*zz*yy
jj[t,3] <- x[1]*zz*zz*yy*x[2]*t
return(jj)
}
hobbs.g<-function(x){ # gradient of Hobbs weeds problem
# NOT EFFICIENT TO CALL AGAIN
jj<-hobbs.jac(x)
res<-hobbs.res(x)
gg<-as.vector(2.*t(jj) %*% res)
return(gg)
}
hobbs.rsd<-function(x) { # Jacobian second derivative
rsd<-array(0.0, c(12,3,3))
t<-1:12
yy<-exp(-x[3]*t)
zz<-1.0/(1+x[2]*yy)
rsd[t,1,1]<- 0.0
rsd[t,2,1]<- -yy*zz*zz
rsd[t,1,2]<- -yy*zz*zz
rsd[t,2,2]<- 2.0*x[1]*yy*yy*zz*zz*zz
rsd[t,3,1]<- t*x[2]*yy*zz*zz
rsd[t,1,3]<- t*x[2]*yy*zz*zz
rsd[t,3,2]<- t*x[1]*yy*zz*zz*(1-2*x[2]*yy*zz)
rsd[t,2,3]<- t*x[1]*yy*zz*zz*(1-2*x[2]*yy*zz)
## rsd[t,3,3]<- 2*t*t*x[1]*x[2]*x[2]*yy*yy*zz*zz*zz
rsd[t,3,3]<- -t*t*x[1]*x[2]*yy*zz*zz*(1-2*yy*zz*x[2])
return(rsd)
}
hobbs.h <- function(x) { ## compute Hessian
# cat("Hessian not yet available\n")
# return(NULL)
H<-matrix(0,3,3)
res<-hobbs.res(x)
jj<-hobbs.jac(x)
rsd<-hobbs.rsd(x)
## H<-2.0*(t(res) %*% rsd + t(jj) %*% jj)
for (j in 1:3) {
for (k in 1:3) {
for (i in 1:12) {
H[j,k]<-H[j,k]+res[i]*rsd[i,j,k]
}
}
}
H<-2*(H + t(jj) %*% jj)
return(H)
}
require(optimx)
x0 <- c(200, 50, .3)
cat("Start for Hobbs:")
print(x0)
solx0 <- snewton(x0, hobbs.f, hobbs.g, hobbs.h)
## Note that we exceed count limit, but have answer
print(solx0)
print(eigen(solx0$Hess)$values)
## Note that we exceed count limit, but have answer
## Setting relative check offset larger gets quicker convergence
solx0a <- snewton(x0, hobbs.f, hobbs.g, hobbs.h, control=list(offset=1000.))
print(solx0a)
x1s <- c(100, 10, .1)
cat("Start for Hobbs:")
print(x1s)
solx1s <- snewton(x1s, hobbs.f, hobbs.g, hobbs.h, control=list(trace=0))
print(solx1s)
print(eigen(solx1s$Hess)$values)
solx1m <- snewton(x1s, hobbs.f, hobbs.g, hobbs.h, control=list(trace=0))
print(solx1m)
print(eigen(solx1m$Hess)$values)
cat("Following test fails in snewton with ERROR -- Why?\n")
x3 <- c(1, 1, 1)
cat("Start for Hobbs:")
print(x3)
ftest <- try(solx3 <- snewton(x3, hobbs.f, hobbs.g, hobbs.h, control=list(trace=0)))
if (class(ftest) != "try-error") {
print(solx3)
print(eigen(solx3$Hess)$values)
}
cat("But Marquardt variant succeeds\n")
solx3m <- snewtonm(x3, hobbs.f, hobbs.g, hobbs.h, control=list(trace=0))
print(solx3m)
print(eigen(solx3m$Hess)$values)
# we can also use nlm and nlminb and call them from optimx
|