1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194
|
% File src/library/stats/man/getresult.Rd
% Part of the R package, http://www.R-project.org
% Copyright 1995-2007 R Core Development Team
% Distributed under GPL 2 or later
\name{gHgenb}
\alias{gHgenb}
\encoding{UTF-8}
\title{Generate gradient and Hessian for a function at given parameters.}
\description{
\code{gHgenb} is used to generate the gradient and Hessian of an objective
function used for optimization. If a user-provided gradient function
\code{gr} is available it is used to compute the gradient, otherwise
package \code{numDeriv} is used. If a user-provided Hessian function
\code{hess} is available, it is used to compute a Hessian. Otherwise, if
\code{gr} is available, we use the function \code{jacobian()} from
package \code{numDeriv} to compute the Hessian. In both these cases we
check for symmetry of the Hessian. Computational Hessians are commonly
NOT symmetric. If only the objective function \code{fn} is provided, then
the Hessian is approximated with the function \code{hessian} from
package \code{numDeriv} which guarantees a symmetric matrix.
}
\usage{
gHgenb(par, fn, gr=NULL, hess=NULL, bdmsk=NULL, lower=NULL, upper=NULL,
control=list(ktrace=0), ...)
}
\arguments{
\item{par}{Set of parameters, assumed to be at a minimum of the function \code{fn}.}
\item{fn}{Name of the objective function.}
\item{gr}{(Optional) function to compute the gradient of the objective function. If present,
we use the Jacobian of the gradient as the Hessian and avoid one layer of numerical
approximation to the Hessian.}
\item{hess}{(Optional) function to compute the Hessian of the objective function. This
is rarely available, but is included for completeness.}
\item{bdmsk}{An integer vector of the same length as \code{par}. When an element
of this vector is 0, the corresponding parameter value is fixed (masked)
during an optimization. Non-zero values indicate a parameter is free (1),
at a lower bound (-3) or at an upper bound (-1), but this routine only
uses 0 values.}
\item{lower}{Lower bounds for parameters in \code{par}.}
\item{upper}{Upper bounds for parameters in \code{par}.}
\item{control}{A list of controls to the function. Currently
asymptol (default of 1.0e-7 which tests for asymmetry of Hessian approximation
(see code for details of the test);
ktrace, a logical flag which, if TRUE, monitors the progress
of gHgenb (default FALSE), and
stoponerror, defaulting to FALSE to NOT stop when there is
an error or asymmetry of Hessian. Set TRUE to stop.}
\item{\dots}{Extra data needed to compute the function, gradient and Hessian.}
}
\details{
None
}
\value{
\code{ansout} a list of four items,
\itemize{
\item{\code{gn}}{ The approximation to the gradient vector.}
\item{\code{Hn}}{ The approximation to the Hessian matrix.}
\item{\code{gradOK}}{ TRUE if the gradient has been computed acceptably. FALSE otherwise.}
\item{\code{hessOK}}{ TRUE if the gradient has been computed acceptably and passes the
symmetry test. FALSE otherwise.}
\item{\code{nbm}}{ The number of active bounds and masks.}
}
}
\examples{
require(numDeriv)
# genrose function code
genrose.f<- function(x, gs=NULL){ # objective function
## One generalization of the Rosenbrock banana valley function (n parameters)
n <- length(x)
if(is.null(gs)) { gs=100.0 }
fval<-1.0 + sum (gs*(x[1:(n-1)]^2 - x[2:n])^2 + (x[2:n] - 1)^2)
return(fval)
}
genrose.g <- function(x, gs=NULL){
# vectorized gradient for genrose.f
# Ravi Varadhan 2009-04-03
n <- length(x)
if(is.null(gs)) { gs=100.0 }
gg <- as.vector(rep(0, n))
tn <- 2:n
tn1 <- tn - 1
z1 <- x[tn] - x[tn1]^2
z2 <- 1 - x[tn]
gg[tn] <- 2 * (gs * z1 - z2)
gg[tn1] <- gg[tn1] - 4 * gs * x[tn1] * z1
return(gg)
}
genrose.h <- function(x, gs=NULL) { ## compute Hessian
if(is.null(gs)) { gs=100.0 }
n <- length(x)
hh<-matrix(rep(0, n*n),n,n)
for (i in 2:n) {
z1<-x[i]-x[i-1]*x[i-1]
z2<-1.0-x[i]
hh[i,i]<-hh[i,i]+2.0*(gs+1.0)
hh[i-1,i-1]<-hh[i-1,i-1]-4.0*gs*z1-4.0*gs*x[i-1]*(-2.0*x[i-1])
hh[i,i-1]<-hh[i,i-1]-4.0*gs*x[i-1]
hh[i-1,i]<-hh[i-1,i]-4.0*gs*x[i-1]
}
return(hh)
}
maxfn<-function(x, top=10) {
n<-length(x)
ss<-seq(1,n)
f<-top-(crossprod(x-ss))^2
f<-as.numeric(f)
return(f)
}
negmaxfn<-function(x) {
f<-(-1)*maxfn(x)
return(f)
}
parx<-rep(1,4)
lower<-rep(-10,4)
upper<-rep(10,4)
bdmsk<-c(1,1,0,1) # masked parameter 3
fval<-genrose.f(parx)
gval<-genrose.g(parx)
Ahess<-genrose.h(parx)
gennog<-gHgenb(parx,genrose.f)
cat("results of gHgenb for genrose without gradient code at ")
print(parx)
print(gennog)
cat("compare to g =")
print(gval)
cat("and Hess\n")
print(Ahess)
cat("\n\n")
geng<-gHgenb(parx,genrose.f,genrose.g)
cat("results of gHgenb for genrose at ")
print(parx)
print(gennog)
cat("compare to g =")
print(gval)
cat("and Hess\n")
print(Ahess)
cat("*****************************************\n")
parx<-rep(0.9,4)
fval<-genrose.f(parx)
gval<-genrose.g(parx)
Ahess<-genrose.h(parx)
gennog<-gHgenb(parx,genrose.f,control=list(ktrace=TRUE), gs=9.4)
cat("results of gHgenb with gs=",9.4," for genrose without gradient code at ")
print(parx)
print(gennog)
cat("compare to g =")
print(gval)
cat("and Hess\n")
print(Ahess)
cat("\n\n")
geng<-gHgenb(parx,genrose.f,genrose.g, control=list(ktrace=TRUE))
cat("results of gHgenb for genrose at ")
print(parx)
print(gennog)
cat("compare to g =")
print(gval)
cat("and Hess\n")
print(Ahess)
gst<-5
cat("\n\nTest with full calling sequence and gs=",gst,"\n")
gengall<-gHgenb(parx,genrose.f,genrose.g,genrose.h, control=list(ktrace=TRUE),gs=gst)
print(gengall)
top<-25
x0<-rep(2,4)
cat("\n\nTest for maximization and top=",top,"\n")
cat("Gradient and Hessian will have sign inverted")
maxt<-gHgen(x0, maxfn, control=list(ktrace=TRUE), top=top)
print(maxt)
cat("test against negmaxfn\n")
gneg <- grad(negmaxfn, x0)
Hneg<-hessian(negmaxfn, x0)
# gdiff<-max(abs(gneg-maxt$gn))/max(abs(maxt$gn))
# Hdiff<-max(abs(Hneg-maxt$Hn))/max(abs(maxt$Hn))
# explicitly change sign
gdiff<-max(abs(gneg-(-1)*maxt$gn))/max(abs(maxt$gn))
Hdiff<-max(abs(Hneg-(-1)*maxt$Hn))/max(abs(maxt$Hn))
cat("gdiff = ",gdiff," Hdiff=",Hdiff,"\n")
}
\keyword{nonlinear}
\keyword{optimize}
|