1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555
|
---
title: "SNewton: safeguarded Newton methods for function minimization"
author: "John C. Nash"
date: "`r Sys.Date()`"
output: pdf_document
vignette: >
%\VignetteEngine{knitr::knitr}
%\VignetteIndexEntry{SNewton}
%\usepackage[utf8]{inputenc}
---
# Safeguarded Newton algorithms
So-called **Newton** methods are among the most commonly mentioned in the
solution of nonlinear
equations or function minimization. However, as discussed in
https://en.wikipedia.org/wiki/Newton%27s_method#History,
the **Newton** or **Newton-Raphson** method as we know it today was not what either of its
supposed originators knew.
This vignette discusses the development of simple
safeguarded variants of the Newton method for
function minimization in **R**. Note that there are some resources in **R** for solving
nonlinear equations by Newton-like methods in the packages **nleqslv** and **pracma**.
# The basic approach
If we have a function $f(x)$, with gradient $g(x)$ and second derivative (Hessian) $H(x)$
the first order condition for an extremum (min or max) is
$$g(x) = 0$$
To ensure a minimum, we want
$$ H(x) > 0 $$
The first order condition leads to a root-finding problem.
It turns out that $x$ need not be a scalar. We can consider it to be a vector of
parameters to be determined. This renders $g(x)$ a vector also, and $H(x)$ a matrix.
The conditions of optimality then require a zero gradient and positive-definite Hessian.
The Newton approach to such
equations is to provide a guess to the root $x_try$ and to then solve the equation
$$ H(x_t) * s = - g(x_t)$$
for the search vector $s$. We update $x_t$ to $x_t + s$ and repeat until we have
a very small gradient $g(x_t)$. If $H(x)$ is positive definite, we have a reasonable
approximation to a (local) minimum.
# Motivations
A particular interest in Newton-like methods its theoretical quadratic convergence. See
https://en.wikipedia.org/wiki/Newton%27s_method.
That is, the method will converge in one step for a
quadratic function $f(x)$, and for "reasonable"
functions will converge very rapidly. There are, however, a number
of conditions, and practical
programs need to include safequards against mis-steps in the iterations.
The principal issues concern the possiblity that $H(x)$ may not
be positive definite, at least
in some parts of the domain, and that the curvature may be such that a unit step $x_t + s$
does not reduce the function $f$. We therefore get a number of possible variants of the
method when different possible safeguards are applied.
# Algorithm possibilities
There are many choices we can make in building a practical code to implement the ideas
above. In tandem with the two main issues expressed above, we will consider
- the modification of the solution of the main equation
$$ H(x_t) * s = - g(x_t)$$ so
that a reasonable search vector $s$ is always generated by avoiding Hessian
matrices that are not positive definite.
- the selection of a new set of parameters $x_new = x_t + step * s$ so that the
function value $f(x_new)$ is less than $f(x_t)$.
The second choice above could be made slightly more stringent so that the Armijo
condition of sufficient-decrease is met.
Adding a curvature requirement gives the
Wolfe condisions. See https://en.wikipedia.org/wiki/Wolfe_conditions.
The Armijo requirement is generally written
$$f(x_t + step*s) < f(x_t) + c * step * g(x_t)^T*s$$
where c is some number less than 1. Typically $c = 1e-4 = 0.0001$. Note that the product
of gradient times search vector is negative for any reasonable situation, since we are
trying to go "downhill".
As a result of the ideas in this section, the code `snewton()` uses a solution of
the Newton equations with the Hessian provided (if this is possible, else we stop),
along with a backtracking line search. The code `snewtonm` uses a Marquardt
stabilization of the Hessian to create
$$ Haug = H + 1_n * lambda$$
That is, we add $lambda$ times the unit matrix to $H$. Then we try the set of parameters
found by adding the solution of the Newton equations with $Haug$ in place of $H$ to the
current "best" set of parameters. If this new set of parameters has a higher function
value than the "best" so far, we increase $lambda$ and try again. Note that we do not
need to re-evaluate the gradient or Hessian to do this. Moreover, for some value of
$lambda$, the step is clearly down the gradient (i.e., steepest descents) or we have
converged and no progress is possible. This leads to a very compact and elegant
code, which we name `snewtonm()` for Safeguarded Newton-Marquardt method.
It is reliable, but may be less efficient than using the un-modified Hessian.
# A choice to compute the search vector
The primary concern in solving for $s$ is that the Hessian may not be positive definite.
This means that we cannot apply fast and stable methods like the Cholesky decomposition
to the matrix. At the time of writing, we use the following approach:
- We attempt to solve
$$ H(x_t) * s = - g(x_t)$$
with **R** directly, and rely on internal
checks to catch any cases where the solution fails. We then use `try()` to stop the
program in this case.
# Choosing the step size
The traditional Newton approach is that the stepsize is taken to be 1. In practice,
this can sometimes mean that the function value is not reduced. As an alternative,
we can use a simple backtrack search. We start with $step = 1$ (actually the program
allows for the element `defstep` of the `control` list to be set to a value other
than 1). If the Armijo condition is not met, we replace $step$ with $ r * step $
where $r$ is less than 1. Here we suggest `control$stepdec = 0.2`. We repeat until
$x_t$ satisfies the Armijo condition or $x_t$ is essentially unchanged by the step.
Here "essentially unchanged" is determined by a test using an offset value, that is,
the test
$$ (x_t + offset) == (x_t + step * d + offset) $$
where $d$ is the search direction. `control$offset = 100` is used. We could
also, and almost equivalently, use the **R** `identical` function.
This approach has been coded into the `snewton()` function.
# Examples
These examples are coded as a test to the interim package **snewton**, but as
at 2018-7-10 are part of the `optimx` package. We call these below mostly via
the `optimr()` function to allow compact output to be used, but please note that
some count information on the number of hessian evaluations and "iterations" (which
generally is an algorithm-specific measure) is not then returned.
## A simple example
The following example is trivial, in that the Hessian is a constant matrix,
and we achieve convergence immediately.
```{r}
x0<-c(1,2,3,4)
fnt <- function(x, fscale=10){
yy <- length(x):1
val <- sum((yy*x)^2)*fscale
}
grt <- function(x, fscale=10){
nn <- length(x)
yy <- nn:1
# gg <- rep(NA,nn)
gg <- 2*(yy^2)*x*fscale
gg
}
hesst <- function(x, fscale=10){
nn <- length(x)
yy <- nn:1
hh <- diag(2*yy^2*fscale)
hh
}
require(optimx)
sessionInfo() # included to ensure we know which version of optimx in use
t1 <- snewton(x0, fnt, grt, hesst, control=list(trace=0), fscale=3.0)
print(t1)
# we can also use nlm and nlminb
fght <- function(x, fscale=10){
## combine f, g and h into single function for nlm
ff <- fnt(x, fscale)
gg <- grt(x, fscale)
hh <- hesst(x, fscale)
attr(ff, "gradient") <- gg
attr(ff, "hessian") <- hh
ff
}
t1nlm <- nlm(fght, x0, fscale=3.0, hessian=TRUE, print.level=0)
print(t1nlm)
## BUT ... it looks like nlminb is NOT using a true Newton-type method
t1nlminb <- nlminb(x0, fnt, gradient=grt, hessian=hesst, fscale=3.0,
control=list(trace=0))
print(t1nlminb)
# and call them from optimx (i.e., test this gives same results)
t1so <- optimr(x0, fnt, grt, hess=hesst, method="snewton", fscale=3.0,
control=list(trace=0))
proptimr(t1so)
t1nlmo <- optimr(x0, fnt, grt, hess=hesst, method="nlm", fscale=3.0,
control=list(trace=0))
proptimr(t1nlmo)
tst <- try(t1nlminbo <- optimr(x0, fnt, grt, hess=hesst, method="nlminb",
fscale=3.0, control=list(trace=0)))
if (class(tst) == "try-error"){
cat("try-error on attempt to run nlminb in optimr()\n")
} else { proptimr(t1nlminbo) }
```
From the number of function and gradient evaluations, it appears `nlminb()` is not
using the Hessian information. Note that the `snewton()` and `snewtonm()` functions
return count information for iterations and hessian evaluations, but these are not
part of the standard `optim()` (and thus `optimr()`) result objects.
## The Rosenbrock function
```{r}
require(optimx)
#Rosenbrock banana valley function
f <- function(x){
return(100*(x[2] - x[1]*x[1])^2 + (1-x[1])^2)
}
#gradient
gr <- function(x){
return(c(-400*x[1]*(x[2] - x[1]*x[1]) - 2*(1-x[1]), 200*(x[2] - x[1]*x[1])))
}
#Hessian
h <- function(x) {
a11 <- 2 - 400*x[2] + 1200*x[1]*x[1]; a21 <- -400*x[1]
return(matrix(c(a11, a21, a21, 200), 2, 2))
}
x0 <- c(-1.2, 1)
# sink("mbrn1-170408.txt", split=TRUE)
t1 <- snewton(x0, fn=f, gr=gr, hess=h, control=list(trace=0))
print(t1)
# we can also use nlm and nlminb
fght <- function(x){
## combine f, g and h into single function for nlm
ff <- f(x)
gg <- gr(x)
hh <- h(x)
attr(ff, "gradient") <- gg
attr(ff, "hessian") <- hh
ff
}
# COULD TRY: t1nlm <- nlm(fght, x0, hessian=TRUE, print.level=2, iterlim=10000)
t1nlmo <- optimr(x0, f, gr, hess=h, method="nlm", control=list(trace=0))
proptimr(t1nlmo)
t1so <- optimr(x0, f, gr, hess=h, method="snewton", control=list(trace=0))
proptimr(t1so)
t1smo <- optimr(x0, f, gr, hess=h, method="snewtonm", control=list(trace=0))
proptimr(t1smo)
## Again, nlminb probably not using hessian
tst <- try(t1nlminbo <- optimr(x0, f, gr, hess=h, method="nlminb",
control=list(trace=0)))
if (class(tst) == "try-error"){
cat("try-error on attempt to run nlminb in optimr()\n")
} else { proptimr(t1nlminbo) }
```
## The Wood function
For `nlm()` the "standard" start takes more than 100 iterations and returns
a non-optimal solution.
```{r}
#Example: Wood function
#
wood.f <- function(x){
res <- 100*(x[1]^2-x[2])^2+(1-x[1])^2+90*(x[3]^2-x[4])^2+(1-x[3])^2+
10.1*((1-x[2])^2+(1-x[4])^2)+19.8*(1-x[2])*(1-x[4])
return(res)
}
#gradient:
wood.g <- function(x){
g1 <- 400*x[1]^3-400*x[1]*x[2]+2*x[1]-2
g2 <- -200*x[1]^2+220.2*x[2]+19.8*x[4]-40
g3 <- 360*x[3]^3-360*x[3]*x[4]+2*x[3]-2
g4 <- -180*x[3]^2+200.2*x[4]+19.8*x[2]-40
return(c(g1,g2,g3,g4))
}
#hessian:
wood.h <- function(x){
h11 <- 1200*x[1]^2-400*x[2]+2; h12 <- -400*x[1]; h13 <- h14 <- 0
h22 <- 220.2; h23 <- 0; h24 <- 19.8
h33 <- 1080*x[3]^2-360*x[4]+2; h34 <- -360*x[3]
h44 <- 200.2
H <- matrix(c(h11,h12,h13,h14,h12,h22,h23,h24,
h13,h23,h33,h34,h14,h24,h34,h44),ncol=4)
return(H)
}
wood.fgh <- function(x){
fval <- wood.f(x)
gval <- wood.g(x)
hval <- wood.h(x)
attr(fval,"gradient") <- gval
attr(fval,"hessian")<- hval
fval
}
#################################################
x0 <- c(-3,-1,-3,-1) # Wood standard start
require(optimx)
# In 100 iterations, not converged
t1nlm <- nlm(wood.fgh, x0, print.level=0)
print(t1nlm)
# But both newton approaches do work
wd <- snewton(x0, fn=wood.f, gr=wood.g, hess=wood.h, control=list(trace=0))
print(wd)
wdm <- snewtonm(x0, fn=wood.f, gr=wood.g, hess=wood.h, control=list(trace=0))
print(wdm)
## AND again nlminb not likely using hessian information
## t1nlminb <- nlminb(x0, wood.f, gradient=wood.g, hess=wood.h, control=list(trace=0))
## print(t1nlminb)
# and call them from optimx (i.e., test this gives same results)
# But optimr uses a larger iteration limit, and gets to solution
t1nlmo <- optimr(x0, wood.f, wood.g, hess=wood.h, method="nlm", control=list(trace=0))
proptimr(t1nlmo)
tst<-try(t1nlminbo <- optimr(x0, wood.f, wood.g, hess=wood.h, method="nlminb", control=list(trace=0)))
if (class(tst) == "try-error"){
cat("try-error on attempt to run nlminb in optimr()\n")
} else { proptimr(t1nlminbo) }
```
## A generalized Rosenbrock function
There are several generalizations of the Rosenbrock function (??ref)
```{r}
# genrosa function code -- attempts to match the rosenbrock at gs=100 and x=c(-1.2,1)
genrosa.f<- function(x, gs=NULL){ # objective function
## One generalization of the Rosenbrock banana valley function (n parameters)
n <- length(x)
if(is.null(gs)) { gs=100.0 }
# Note do not at 1.0 so min at 0
fval<-sum (gs*(x[1:(n-1)]^2 - x[2:n])^2 + (x[1:(n-1)] - 1)^2)
}
genrosa.g <- function(x, gs=NULL){
# vectorized gradient for genrose.f
# Ravi Varadhan 2009-04-03
n <- length(x)
if(is.null(gs)) { gs=100.0 }
gg <- as.vector(rep(0, n))
tn <- 2:n
tn1 <- tn - 1
z1 <- x[tn] - x[tn1]^2
z2 <- 1 - x[tn1]
# f = gs*z1*z1 + z2*z2
gg[tn] <- 2 * (gs * z1)
gg[tn1] <- gg[tn1] - 4 * gs * x[tn1] * z1 - 2 *z2
return(gg)
}
genrosa.h <- function(x, gs=NULL) { ## compute Hessian
if(is.null(gs)) { gs=100.0 }
n <- length(x)
hh<-matrix(rep(0, n*n),n,n)
for (i in 2:n) {
z1<-x[i]-x[i-1]*x[i-1]
# z2<-1.0 - x[i-1]
hh[i,i]<-hh[i,i]+2.0*(gs+1.0)
hh[i-1,i-1]<-hh[i-1,i-1]-4.0*gs*z1-4.0*gs*x[i-1]*(-2.0*x[i-1])
hh[i,i-1]<-hh[i,i-1]-4.0*gs*x[i-1]
hh[i-1,i]<-hh[i-1,i]-4.0*gs*x[i-1]
}
return(hh)
}
require(optimx)
cat("Generalized Rosenbrock tests\n")
cat("original n and x0")
x0 <- c(-1.2, 1)
solorig <- snewton(x0, genrosa.f, genrosa.g, genrosa.h)
print(solorig)
print(eigen(solorig$Hess)$values)
solorigm <- snewtonm(x0, genrosa.f, genrosa.g, genrosa.h)
print(solorigm)
print(eigen(solorigm$Hess)$values)
cat("Start with 50 values of pi and scale factor 10\n")
x0 <- rep(pi, 50)
sol50pi <- optimr(x0, genrosa.f, genrosa.g, genrosa.h, method="snewton", gs=10)
proptimr(sol50pi)
hhi <- genrosa.h(sol50pi$par, gs=10)
print(eigen(hhi)$values)
sol50pim <- optimr(x0, genrosa.f, genrosa.g, genrosa.h, method="snewtonm", gs=10)
proptimr(sol50pim)
hhm <- genrosa.h(sol50pim$par, gs=10)
print(eigen(hhm)$values)
```
## The Hobbs weed infestation problem
This problem is described in @cnm79. It has various nasty properties. Note that one starting point causes
failure of the `snewton()` optimizer.
```{r}
## Optimization test function HOBBS
## ?? refs (put in .doc??)
## Nash and Walker-Smith (1987, 1989) ...
require(optimx)
hobbs.f<- function(x){ # # Hobbs weeds problem -- function
if (abs(12*x[3]) > 500) { # check computability
fbad<-.Machine$double.xmax
return(fbad)
}
res<-hobbs.res(x)
f<-sum(res*res)
}
hobbs.res<-function(x){ # Hobbs weeds problem -- residual
# This variant uses looping
if(length(x) != 3) stop("hobbs.res -- parameter vector n!=3")
y<-c(5.308, 7.24, 9.638, 12.866, 17.069, 23.192, 31.443, 38.558, 50.156, 62.948,
75.995, 91.972)
t<-1:12
if(abs(12*x[3])>50) {
res<-rep(Inf,12)
} else {
res<-x[1]/(1+x[2]*exp(-x[3]*t)) - y
}
}
hobbs.jac<-function(x){ # Jacobian of Hobbs weeds problem
jj<-matrix(0.0, 12, 3)
t<-1:12
yy<-exp(-x[3]*t)
zz<-1.0/(1+x[2]*yy)
jj[t,1] <- zz
jj[t,2] <- -x[1]*zz*zz*yy
jj[t,3] <- x[1]*zz*zz*yy*x[2]*t
return(jj)
}
hobbs.g<-function(x){ # gradient of Hobbs weeds problem
# NOT EFFICIENT TO CALL AGAIN
jj<-hobbs.jac(x)
res<-hobbs.res(x)
gg<-as.vector(2.*t(jj) %*% res)
return(gg)
}
hobbs.rsd<-function(x) { # Jacobian second derivative
rsd<-array(0.0, c(12,3,3))
t<-1:12
yy<-exp(-x[3]*t)
zz<-1.0/(1+x[2]*yy)
rsd[t,1,1]<- 0.0
rsd[t,2,1]<- -yy*zz*zz
rsd[t,1,2]<- -yy*zz*zz
rsd[t,2,2]<- 2.0*x[1]*yy*yy*zz*zz*zz
rsd[t,3,1]<- t*x[2]*yy*zz*zz
rsd[t,1,3]<- t*x[2]*yy*zz*zz
rsd[t,3,2]<- t*x[1]*yy*zz*zz*(1-2*x[2]*yy*zz)
rsd[t,2,3]<- t*x[1]*yy*zz*zz*(1-2*x[2]*yy*zz)
## rsd[t,3,3]<- 2*t*t*x[1]*x[2]*x[2]*yy*yy*zz*zz*zz
rsd[t,3,3]<- -t*t*x[1]*x[2]*yy*zz*zz*(1-2*yy*zz*x[2])
return(rsd)
}
hobbs.h <- function(x) { ## compute Hessian
# cat("Hessian not yet available\n")
# return(NULL)
H<-matrix(0,3,3)
res<-hobbs.res(x)
jj<-hobbs.jac(x)
rsd<-hobbs.rsd(x)
## H<-2.0*(t(res) %*% rsd + t(jj) %*% jj)
for (j in 1:3) {
for (k in 1:3) {
for (i in 1:12) {
H[j,k]<-H[j,k]+res[i]*rsd[i,j,k]
}
}
}
H<-2*(H + t(jj) %*% jj)
return(H)
}
require(optimx)
x0 <- c(200, 50, .3)
cat("Start for Hobbs:")
print(x0)
solx0 <- snewton(x0, hobbs.f, hobbs.g, hobbs.h)
## Note that we exceed count limit, but have answer
print(solx0)
print(eigen(solx0$Hess)$values)
## Note that we exceed count limit, but have answer
## Setting relative check offset larger gets quicker convergence
solx0a <- snewton(x0, hobbs.f, hobbs.g, hobbs.h, control=list(offset=1000.))
print(solx0a)
x1s <- c(100, 10, .1)
cat("Start for Hobbs:")
print(x1s)
solx1s <- snewton(x1s, hobbs.f, hobbs.g, hobbs.h, control=list(trace=0))
print(solx1s)
print(eigen(solx1s$Hess)$values)
solx1m <- snewton(x1s, hobbs.f, hobbs.g, hobbs.h, control=list(trace=0))
print(solx1m)
print(eigen(solx1m$Hess)$values)
cat("Following test fails in snewton with ERROR -- Why?\n")
x3 <- c(1, 1, 1)
cat("Start for Hobbs:")
print(x3)
ftest <- try(solx3 <- snewton(x3, hobbs.f, hobbs.g, hobbs.h, control=list(trace=0)))
if (class(ftest) != "try-error") {
print(solx3)
print(eigen(solx3$Hess)$values)
}
cat("But Marquardt variant succeeds\n")
solx3m <- snewtonm(x3, hobbs.f, hobbs.g, hobbs.h, control=list(trace=0))
print(solx3m)
print(eigen(solx3m$Hess)$values)
# we can also use nlm and nlminb and call them from optimx
```
|