1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355
|
## ox - interactive example
if(!require("optimx"))stop("this test requires package optimx.")
require(graphics)
fr <- function(x) { ## Rosenbrock Banana function
x1 <- x[1]
x2 <- x[2]
100 * (x2 - x1 * x1)^2 + (1 - x1)^2
}
grr <- function(x) { ## Gradient of 'fr'
x1 <- x[1]
x2 <- x[2]
c(-400 * x1 * (x2 - x1 * x1) - 2 * (1 - x1),
200 * (x2 - x1 * x1))
}
ans1<-optimx(c(-1.2,1), fr)
ans1
tmpin<-readline("cont?")
str(ans1)
tmpin<-readline("cont?")
print(attr(ans1,"details"))
tmpin<-readline("cont?")
coef(ans1)
print(dim(coef(ans1)))
tmpin<-readline("cont?")
summary(ans1)
tmpin<-readline("cont?")
best1<-summary(ans1, sort.order=value)[1, ]
best1
dim(best1)
tmpin<-readline("cont?")
####
##JN Since this is a single method, the details could have wrong structure
ans2<-optimx(c(-1.2,1), fr, grr, method = "BFGS")
ans2
tmpin<-readline("cont?")
str(ans2)
tmpin<-readline("cont?")
det2<-attr(ans2,"details")
##JN cat("dim(det2)\n")
print(dim(det2))
tmpin<-readline("cont?")
coef(ans2)
print(dim(coef(ans2)))
tmpin<-readline("cont?")
ans2d<-as.data.frame(ans2)
print(ans2d)
attributes(ans2d)
tmpin<-readline("cont?")
ans2parval<-ans2[,1:(attr(ans2,"npar")+1)]
print(ans2parval)
class(ans2parval)
tmpin<-readline("cont?")
summary(ans2)
dim(summary(ans2))
tmpin<-readline("cont?")
## The next line will fail if executed because 'hessian = TRUE' no longer allowed
# ans3<-optimx(c(-1.2,1), fr, NULL, method = "BFGS", hessian = TRUE)
ans3<-optimx(c(-1.2,1), fr, NULL, method = "BFGS", hessian = TRUE)
ans3
tmpin<-readline("cont?")
str(ans3)
tmpin<-readline("cont?")
####q
ans4<-optimx(c(-1.2,1), fr, grr, method = "CG",control=list(trace=1))
ans4
tmpin<-readline("cont?")
str(ans4)
tmpin<-readline("cont?")
####
ans5<-optimx(c(-1.2,1), fr, grr, method = "CG", control=list(type=2))
ans5
tmpin<-readline("cont?")
str(ans5)
tmpin<-readline("cont?")
####
ans6<-optimx(c(-1.2,1), fr, grr, method = "L-BFGS-B")
ans6
tmpin<-readline("cont?")
str(ans6)
tmpin<-readline("cont?")
####
flb <- function(x)
{ p <- length(x); sum(c(1, rep(4, p-1)) * (x - c(1, x[-p])^2)^2) }
## 25-dimensional box constrained
ans7<- optimx(rep(3, 25), flb, NULL, method = "L-BFGS-B",
lower=rep(2, 25), upper=rep(4, 25)) # par[24] is *not* at boundary
ans7
tmpin<-readline("cont?")
str(ans7)
tmpin<-readline("cont?")
## "wild" function , global minimum at about -15.81515
## fw <- function (x)
## 10*sin(0.3*x)*sin(1.3*x^2) + 0.00001*x^4 + 0.2*x+80
## plot(fw, -50, 50, n=1000, main = "optim() minimising 'wild function'")
## Suppressed for optimx() ans7 <- optimx(50, fw, method="SANN",
## control=list(maxit=20000, temp=20, parscale=20))
## ans7a
## Now improve locally {typically only by a small bit}:
## newpar<-unlist(ans7$par) # NOTE: you need to unlist the parameters as optimx() has multiple outputs
##(r2 <- optimx(newpar, fw, method="BFGS"))
##points(r2$par, r2$value, pch = 8, col = "red", cex = 2)
## Show multiple outputs of optimx using all.methods
# genrose function code
genrose.f<- function(x, gs=NULL){ # objective function
## One generalization of the Rosenbrock banana valley function (n parameters)
n <- length(x)
if(is.null(gs)) { gs=100.0 }
fval<-1.0 + sum (gs*(x[1:(n-1)]^2 - x[2:n])^2 + (x[2:n] - 1)^2)
return(fval)
}
genrose.g <- function(x, gs=NULL){
# vectorized gradient for genrose.f
# Ravi Varadhan 2009-04-03
n <- length(x)
if(is.null(gs)) { gs=100.0 }
gg <- as.vector(rep(0, n))
tn <- 2:n
tn1 <- tn - 1
z1 <- x[tn] - x[tn1]^2
z2 <- 1 - x[tn]
gg[tn] <- 2 * (gs * z1 - z2)
gg[tn1] <- gg[tn1] - 4 * gs * x[tn1] * z1
return(gg)
}
genrose.h <- function(x, gs=NULL) { ## compute Hessian
if(is.null(gs)) { gs=100.0 }
n <- length(x)
hh<-matrix(rep(0, n*n),n,n)
for (i in 2:n) {
z1<-x[i]-x[i-1]*x[i-1]
z2<-1.0-x[i]
hh[i,i]<-hh[i,i]+2.0*(gs+1.0)
hh[i-1,i-1]<-hh[i-1,i-1]-4.0*gs*z1-4.0*gs*x[i-1]*(-2.0*x[i-1])
hh[i,i-1]<-hh[i,i-1]-4.0*gs*x[i-1]
hh[i-1,i]<-hh[i-1,i]-4.0*gs*x[i-1]
}
return(hh)
}
startx<-4*seq(1:10)/3.
ans8<-optimx(startx,fn=genrose.f,gr=genrose.g, hess=genrose.h, control=list(all.methods=TRUE, save.failures=TRUE, trace=0), gs=10)
ans8
tmpin<-readline("cont?")
str(ans8)
tmpin<-readline("cont?")
ans8[, "gevals"]
tmpin<-readline("cont?")
ans8["spg", ]
tmpin<-readline("cont?")
summary(ans8, par.select = 1:3)
tmpin<-readline("cont?")
summary(ans8, sort.order = value)[1, ] # show best value
tmpin<-readline("cont?")
head(summary(ans8, sort.order = value)) # best few
tmpin<-readline("cont?")
ans8.best<-summary(ans8, sort.order = value)[1,]
print(ans8.best)
attr(ans8.best,"details")
tmpin<-readline("cont?")
## order by value. Within those values the same to 3 decimals order by fevals.
summary(ans8, sort.order = list(round(value, 3), fevals), par.select = FALSE)
summary(ans8, sort.order = rownames, par.select = FALSE) # order by method name
tmpin<-readline("cont?")
summary(ans8, par.select = FALSE) # same
tmpin<-readline("cont?")
## Test missing methods
ans8missmeth<-optimx(startx,fn=genrose.f,gr=genrose.g, method=c("spg", "Rcgmin"),
control=list(save.failures=TRUE, trace=0), gs=10)
# There are just 2 methods here
ans8missmeth
tmpin<-readline("cont?")
# ans8missmeth["Rvmmin", ]
# When we try for a method that is not there in the structure
# the rowname (that is, the method) comes back "NA"
ans8missmeth["Rvmmin", ]
cat("Is method Rvmmin missing? ", (row.names(ans8missmeth["Rvmmin",])[[1]] == "NA"),"\n")
tmp<-readline("Getting items in attributes")
abest<-summary(ans8, order=value)[1,]
print(abest)
attributes(abest)
abestdetails<-attr(abest, "details")
abestdetails[2]
abestdetails[3]
abestdetails[,"ngatend"]
abestdetails[,"hev"]
tmpin<-readline("Polyalgorithm")
startx<-4*seq(1:10)/3.
####
## "Polyalgorithm with 200 steps NM followed by up to 75 of ucminf
ans9<-optimx(startx,fn=genrose.f,gr=genrose.g, hess=genrose.h, method=c("Nelder-Mead","ucminf"),
itnmax=c(200,75), control=list(follow.on=TRUE, save.failures=TRUE,trace=0), gs=10)
ans9
tmpin<-readline("cont? Again, but with trace on")
ans9<-optimx(startx,fn=genrose.f,gr=genrose.g, hess=genrose.h, method=c("Nelder-Mead","ucminf"),
itnmax=c(200,75), control=list(follow.on=TRUE, save.failures=TRUE,trace=1), gs=10)
####
startx<-4*seq(1:10)/3.
## 200 steps NM is not enough to terminate
ans10<-optimx(startx,fn=genrose.f,gr=genrose.g, method=c("Nelder-Mead"),
itnmax=c(200), control=list(trace=0, save.failures=FALSE), gs=10)
## The answer should be NULL
ans10
tmpin<-readline("cont?")
str(ans10)
tmpin<-readline("cont?")
####
startx<-4*seq(1:10)/3.
## Try getting hessian but not kkt tests
ans11<-optimx(startx,fn=genrose.f,gr=genrose.g, hessian=TRUE,
control=list(all.methods=TRUE, trace=0, save.failures=FALSE, kkt=FALSE), gs=10)
ans11
tmpin<-readline("cont?")
str(ans11)
tmpin<-readline("cont?")
## Method 7 should be Rvmmin
attr(ans11,"details")[7]
####
startx<-4*seq(1:10)/3.
## Use analytic hessian and no KKT tests
ans12<-optimx(startx,fn=genrose.f,gr=genrose.g, hess=genrose.h,
control=list(trace=0, save.failures=FALSE, kkt=FALSE), gs=10)
ans12
attr(ans12,"details")
tmpin<-readline("cont?")
str(ans12)
tmpin<-readline("cont?")
####
## Maximization test
maxfn<-function(x) {
n<-length(x)
ss<-seq(1,n)
f<-10-(crossprod(x-ss))^2
f<-as.numeric(f)
return(f)
}
x0<-rep(pi,4)
ans.mx<-optimx(x0,maxfn,control=list(maximize=TRUE,all.methods=TRUE,save.failures=TRUE,trace=TRUE))
ans.mx
tmpin<-readline("cont?")
str(ans.mx)
tmpin<-readline("cont?")
best.mx<-summary(ans.mx, sort.order = value)[1, ]
best.mx
## Check that hessian eigenvalues are negative
attr(best.mx,"details")["hev"]
tmpin<-readline("cont?")
attr(best.mx,"details")$nhatend
tmpin<-readline("cont?")
cat("test names on parameters\n")
## Bates model: y = Asym/(1+exp((xmid-t)/scal))
## = b1 / (1 + exp(xmid/scal)*exp(-t/scal))
## = b1 / (1 + b2 * exp(-b3*t))
## where b2 = exp(xmid/scal)
## b3 = 1/scal b1 = Asym
## So Asym = b1, scal = 1/b3, xmid = log(b2) * scal = log(b2)/b3
hbates.res<-function(x) {
if(length(x) != 3) stop("hobbs.res -- parameter vector n!=3")
y<-c(5.308, 7.24, 9.638, 12.866, 17.069, 23.192, 31.443,
38.558, 50.156, 62.948, 75.995, 91.972)
t<-1:12
# if(abs(12*x[3])>50) {
# res<-rep(Inf,12)
# } else {
res<-x[1]/(1+exp((x[2]-t)/x[3])) - y
# }
}
hbates.f<- function(x){ # # Hobbs weeds problem -- function
# if (abs(12*x[3]) > 500) { # check computability
# fbad<-.Machine$double.xmax
# return(fbad)
# }
res<-hbates.res(x)
f<-sum(res*res)
}
hbates.jac<-function(x){ # Jacobian of Hobbs weeds problem
jj<-matrix(0.0, 12, 3)
t<-1:12
yy<-exp((x[2]-t)/x[3])
zz<-1.0/(1+yy)
jj[ ,1] <- zz
jj[ ,2] <- -x[1]*zz*zz*yy/x[3]
jj[ ,3] <- x[1]*zz*zz*yy*(x[2]-t)/(x[3]*x[3])
return(jj)
}
hbates.g<-function(x){ # gradient of Hobbs weeds problem
# NOT EFFICIENT TO CALL AGAIN
jj<-hbates.jac(x)
res<-hbates.res(x)
gg<-as.vector(2.*t(jj) %*% res)
return(gg)
}
start<-c(200,10,10)
names(start)<-NULL # just to be safe
# no names
anoname<-optimx(start, hbates.f, hbates.g, control=list(all.methods=TRUE))
print(summary(anoname))
names(start)<-c("Asym", "xmid", "scal")
anames<-optimx(start, hbates.f, hbates.g, control=list(all.methods=TRUE))
print(summary(anames))
tmpin<-readline("cont?")
cat("DONE!")
|