File: optimx-package.Rd

package info (click to toggle)
r-cran-optimx 2022-4.30%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 1,524 kB
  • sloc: sh: 21; makefile: 5
file content (67 lines) | stat: -rw-r--r-- 2,625 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
\name{optimx-package}
\alias{optimx-package}
\docType{package}
\title{
A replacement and extension of the optim() function, plus various optimization
tools
}
\description{
\code{\link{optimx}}
provides a replacement and extension of the \code{link{optim()}} function to 
unify and streamline optimization capabilities in R for smooth, possibly box
constrained functions of several or many parameters

The three functions ufn, ugr and uhess wrap corresponding user functions fn, gr, and 
hess so that these functions can be executed safely (via try()) and also so parameter or
function scaling can be applied. The wrapper
functions also allow for maximization of functions (via minimization of the negative of
the function) using the logical parameter \code{maximize}.

There are three test functions, fnchk, grchk, and hesschk, to allow the user 
function to be tested for validity and correctness. However, no set of tests is 
exhaustive, and extensions and improvements are welcome. The package 
\code{numDeriv} is used for generation of numerical approximations to 
derivatives.

}
\details{

Index:
\preformatted{
axsearch     Perform an axial search optimality check
bmchk        Check bounds and masks for parameter constraints
bmstep       Compute the maximum step along a search direction.
fnchk        Test validity of user function
gHgen        Compute gradient and Hessian as a given 
             set of parameters
gHgenb       Compute gradient and Hessian as a given 
             set of parameters appying bounds and masks
grback       Backward numerical gradient approximation
grcentral    Central numerical gradient approximation
grchk        Check that gradient function evaluation 
             matches numerical gradient
grfwd        Forward numerical gradient approximation
grnd         Gradient approximation using \code{numDeriv}
hesschk      Check that Hessian function evaluation 
             matches numerical approximation
kktchk         Check the Karush-Kuhn-Tucker optimality conditions
scalechk   Check scale of initial parameters and bounds
optsp        An environment to hold some globally useful items
             used by optimization programs
proptimr     compact output of optimr() result object             
}

}
\author{
John C Nash <nashjc@uottawa.ca> and Ravi Varadhan <RVaradhan@jhmi.edu>

Maintainer: John C Nash <nashjc@uottawa.ca>
}
\references{
  Nash, John C. and Varadhan, Ravi (2011) Unifying Optimization Algorithms 
          to Aid Software System Users: optimx for R, Journal of Statistical
	  Software, publication pending.
}
\keyword{ package }
\keyword{ optimization }