1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303
|
#############################################################################
## Copyright (c) 2010-2022 Rune Haubo Bojesen Christensen
##
## This file is part of the ordinal package for R (*ordinal*)
##
## *ordinal* is free software: you can redistribute it and/or modify
## it under the terms of the GNU General Public License as published by
## the Free Software Foundation, either version 2 of the License, or
## (at your option) any later version.
##
## *ordinal* is distributed in the hope that it will be useful,
## but WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
## GNU General Public License for more details.
##
## A copy of the GNU General Public License is available at
## <https://www.r-project.org/Licenses/> and/or
## <http://www.gnu.org/licenses/>.
#############################################################################
# clm.anova.R
single_anova <- function(object,
type = c("III", "II", "I", "3", "2", "1", "marginal", "2b")) {
type <- type[1L]
if(!is.character(type)) type <- as.character(type)
type <- match.arg(type)
if(type %in% c("I", "II", "III"))
type <- as.character(as.integer(as.roman(type)))
if(any(is.na(vcov(object))))
stop("anova table not available with non-finite values in vcov(object)")
# Get list of contrast matrices (L) - one for each model term:
L_list <- if(type == "1") {
get_contrasts_type1(object)
} else if(type == "2") {
get_contrasts_type2_unfolded(object)
} else if(type == "2b") {
get_contrasts_type2(object)
} else if(type == "3") {
get_contrasts_type3(object)
} else if(type == "marginal") {
get_contrasts_marginal(object)
} else {
stop("'type' not recognized")
}
# Add cols to L for alpha, zeta and lambda params:
L_list <- adjust_contrast_for_param(object, L_list)
# Get F-test for each term and collect in table:
table <- rbindall(lapply(L_list, function(L) contestMD(object, L)))
# Format ANOVA table and return:
if(length(nm <- setdiff(names(L_list), rownames(table)))) {
tab <- array(NA_real_, dim=c(length(nm), ncol(table)),
dimnames = list(nm, colnames(table)))
table <- rbind(table, tab)[names(L_list), ]
}
# Format 'type':
type <- if(type == "marginal") {
"Marginal"
} else if(grepl("b|c", type)) {
alph <- gsub("[0-9]", "", type)
paste0("Type ", as.roman(as.integer(gsub("b|c", "", type))), alph)
} else paste("Type", as.roman(as.integer(type)))
attr(table, "heading") <-
paste(type, "Analysis of Deviance Table with Wald chi-square tests\n")
attr(table, "hypotheses") <- L_list
class(table) <- c("anova", "data.frame")
table
}
adjust_contrast_for_param <- function(model, L) {
nalpha <- length(model$alpha)
nzeta <- if(is.null(model$zeta)) 0L else length(model$zeta)
nlambda <- if(is.null(model$lambda)) 0L else length(model$lambda)
nextra <- nzeta + nlambda
# pre and post add extra cols to L:
add <- function(L) {
pre <- array(0, dim=c(nrow(L), nalpha))
post <- array(0, dim=c(nrow(L), nextra))
cbind(pre, L[, -1L, drop=FALSE], post)
}
if(!is.list(L)) add(L) else lapply(L, add)
}
model_matrix <- function(object, ...) {
if(!inherits(object, "clm")) return(model.matrix(object, ...))
X <- model.matrix(object)$X
if(!any(object$aliased$beta)) return(X)
remove <- c(FALSE, object$aliased$beta)
newX <- X[, !remove, drop=FALSE]
attr(newX, "assign") <- attr(X, "assign")[!remove]
contr <- attr(X, "contrasts")
if(!is.null(contr)) attr(newX, "contrasts") <- contr
newX
}
contestMD <- function(model, L, rhs=0, eps=sqrt(.Machine$double.eps), ...) {
mk_Qtable <- function(Qvalue, df) {
pvalue <- pchisq(q=Qvalue, df=df, lower.tail=FALSE)
data.frame("Df"=df, "Chisq"=Qvalue, "Pr(>Chisq)"=pvalue,
check.names = FALSE)
}
if(!is.matrix(L)) L <- matrix(L, ncol=length(L))
stopifnot(is.matrix(L), is.numeric(L),
ncol(L) == length(coef(model, na.rm=TRUE)))
if(length(rhs) == 1L) rhs <- rep(rhs, nrow(L))
stopifnot(is.numeric(rhs), length(rhs) == nrow(L))
if(nrow(L) == 0L) { # May happen if there are no fixed effects
x <- numeric(0L)
return(mk_Qtable(x, x))
}
if(any(is.na(L))) return(mk_Qtable(NA_real_, NA_real_))
beta <- coef(model, na.rm=TRUE)
vcov_beta <- vcov(model)
# Adjust beta for rhs:
if(!all(rhs == 0)) beta <- beta - drop(MASS::ginv(L) %*% rhs)
# Compute Var(L beta) and eigen-decompose:
VLbeta <- L %*% vcov_beta %*% t(L) # Var(contrast) = Var(Lbeta)
eig_VLbeta <- eigen(VLbeta)
P <- eig_VLbeta$vectors
d <- eig_VLbeta$values
tol <- max(eps * d[1], 0)
pos <- d > tol
q <- sum(pos) # rank(VLbeta)
if(q < nrow(L) && !all(rhs == 0))
warning("Contrast is rank deficient and test may be affected")
if(q <= 0) { # shouldn't happen if L is a proper contrast
x <- numeric(0L)
return(mk_Qtable(x, x))
}
PtL <- crossprod(P, L)[1:q, ]
# Compute t-squared values and Q-value:
t2 <- drop(PtL %*% beta)^2 / d[1:q]
Qvalue <- sum(t2)
mk_Qtable(Qvalue, df=q)
}
##############################################
######## get_contrasts_type3
##############################################
get_contrasts_type3 <- function(model, which=NULL) {
term_names <- attr(terms(model), "term.labels")
# Extract original design matrix:
Xorig <- model_matrix(model)
# Assumes Xorig is full (column) rank
if(is.null(which)) {
which <- term_names
# If model has at most one term return Type I contrasts:
if(ncol(Xorig) <= 1L || length(term_names) <= 1L)
return(get_contrasts_type1(model))
} else stopifnot(is.character(which), all(which %in% term_names))
# Extract contrast coding in Xorig:
codings <- unlist(attr(Xorig, "contrast"))
# If only treatment contrasts are used we can just return the type 3
# contrasts for contr.treatment coding:
if(length(codings) > 0 &&
all(is.character(codings)) && all(codings %in% c("contr.treatment")))
return(extract_contrasts_type3(model, X=Xorig))
# otherwise we need to map the type III contrasts to whatever contrast
# coding was used:
X <- get_model_matrix(model, type="remake", contrasts="contr.treatment")
# Ensure that X is full (column) rank:
X <- ensure_full_rank(X, silent=TRUE, test.ans=FALSE)
# Extract contrasts assuming contr.treatment coding:
type3ctr <- extract_contrasts_type3(model, X=X)
map <- zapsmall(ginv(X) %*% Xorig) # Maps between contrast codings
rownames(map) <- colnames(X)
lapply(type3ctr[which], function(L) L %*% map)
}
##############################################
######## get_contrasts_type1
##############################################
get_contrasts_type1 <- function(model) {
terms <- terms(model)
X <- model_matrix(model)
nalpha <- length(model$alpha)
p <- ncol(X)
if(p == 0L) return(list(matrix(numeric(0L), nrow=0L))) # no fixef
if(p == 1L && attr(terms, "intercept")) # intercept-only model
return(list(matrix(numeric(0L), ncol=nalpha)))
# Compute 'normalized' doolittle factorization of XtX:
L <- if(p == 1L) matrix(1L) else t(doolittle(crossprod(X))$L)
dimnames(L) <- list(colnames(X), colnames(X))
# Determine which rows of L belong to which term:
ind.list <- term2colX(terms, X)[attr(terms, "term.labels")]
lapply(ind.list, function(rows) L[rows, , drop=FALSE])
}
##############################################
######## get_contrasts_type2_unfolded
##############################################
get_contrasts_type2_unfolded <- function(model, which=NULL) {
# Computes the 'genuine type II contrast' for all terms that are
# contained in other terms. For all terms which are not contained in other
# terms, the simple marginal contrast is computed.
X <- model_matrix(model)
Terms <- terms(model)
term_names <- attr(Terms, "term.labels")
if(is.null(which)) {
which <- term_names
# If model has at most one term return Type I contrasts:
if(ncol(X) <= 1L || length(term_names) <= 1L)
return(get_contrasts_type1(model))
} else stopifnot(is.character(which), all(which %in% term_names))
is_contained <- containment(model)
do_marginal <- names(is_contained)[sapply(is_contained, length) == 0L]
do_type2 <- setdiff(term_names, do_marginal)
if(!length(do_marginal)) list() else
Llist <- get_contrasts_marginal(model, which=do_marginal)
if(length(do_type2))
Llist <- c(Llist, get_contrasts_type2(model, which=do_type2))
Llist[term_names]
}
##############################################
######## get_contrasts_type2
##############################################
get_contrasts_type2 <- function(model, which=NULL) {
# Computes the type 2 contrasts - either for all terms or for those
# included in 'which' (a chr vector naming model terms).
# returns a list
X <- model_matrix(model)
nalpha <- length(model$alpha)
terms <- terms(model)
data_classes <- attr(terms(model), "dataClasses")
if(is.null(asgn <- attr(X, "assign")))
stop("design matrix 'X' should have a non-null 'assign' attribute")
term_names <- attr(terms, "term.labels")
if(is.null(which)) {
which <- term_names
# If model has at most one term return Type I contrasts:
if(ncol(X) <= 1L || length(term_names) <= 1L)
return(get_contrasts_type1(model))
} else stopifnot(is.character(which), all(which %in% term_names))
which <- setNames(as.list(which), which)
# Compute containment:
is_contained <- containment(model)
# Compute term asignment list: map from terms to columns in X
has_intercept <- attr(terms, "intercept") > 0
col_terms <- if(has_intercept) c("(Intercept)", term_names)[asgn + 1] else
term_names[asgn[asgn > 0]]
if(!length(col_terms) == ncol(X)) # should never happen.
stop("An error happended when computing Type II contrasts")
term2colX <- split(seq_along(col_terms), col_terms)[unique(col_terms)]
# Compute contrast for each term - return as named list:
lapply(which, function(term) {
# Reorder the cols in X to [, unrelated_to_term, term, contained_in_term]
cols_term <- unlist(term2colX[c(term, is_contained[[term]])])
Xnew <- cbind(X[, -cols_term, drop=FALSE], X[, cols_term, drop=FALSE])
# Compute order of terms in Xnew:
newXcol_terms <- c(col_terms[-cols_term], col_terms[cols_term])
# Compute Type I contrasts for the reordered X:
Lc <- t(doolittle(crossprod(Xnew))$L)
dimnames(Lc) <- list(colnames(Xnew), colnames(Xnew))
# Extract rows for term and get original order of columns:
Lc[newXcol_terms == term, colnames(X), drop=FALSE]
})
}
##############################################
######## get_contrasts_marginal
##############################################
#' @importFrom stats model.matrix terms
get_contrasts_marginal <- function(model, which=NULL) {
# Computes marginal contrasts.
#
# No tests of conformity with coefficients are implemented
#
# returns a list
X <- model_matrix(model)
terms <- terms(model)
term_names <- attr(terms, "term.labels")
if(is.null(which)) {
which <- term_names
# If model has at most one term return Type I contrasts:
if(ncol(X) <= 1L || length(term_names) <= 1L)
return(get_contrasts_type1(model))
} else stopifnot(is.character(which), all(which %in% term_names))
# Compute map from terms to columns in X and contrasts matrix
term2colX <- term2colX(terms, X)
L <- structure(diag(ncol(X)), dimnames = list(colnames(X), colnames(X)))
# Extract contrast for each term - return as named list:
which <- setNames(as.list(which), which)
lapply(which, function(term) {
L[term2colX[[term]], , drop=FALSE]
})
}
##############################################
######## rbindall
##############################################
rbindall <- function(...) do.call(rbind, ...)
cbindall <- function(...) do.call(cbind, ...)
|