File: clm.anova.R

package info (click to toggle)
r-cran-ordinal 2022.11-16-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 1,856 kB
  • sloc: ansic: 979; sh: 13; makefile: 5
file content (303 lines) | stat: -rw-r--r-- 11,929 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
#############################################################################
##    Copyright (c) 2010-2022 Rune Haubo Bojesen Christensen
##
##    This file is part of the ordinal package for R (*ordinal*)
##
##    *ordinal* is free software: you can redistribute it and/or modify
##    it under the terms of the GNU General Public License as published by
##    the Free Software Foundation, either version 2 of the License, or
##    (at your option) any later version.
##
##    *ordinal* is distributed in the hope that it will be useful,
##    but WITHOUT ANY WARRANTY; without even the implied warranty of
##    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
##    GNU General Public License for more details.
##
##    A copy of the GNU General Public License is available at
##    <https://www.r-project.org/Licenses/> and/or
##    <http://www.gnu.org/licenses/>.
#############################################################################
# clm.anova.R

single_anova <- function(object,
                         type = c("III", "II", "I", "3", "2", "1", "marginal", "2b")) {
  type <- type[1L]
  if(!is.character(type)) type <- as.character(type)
  type <- match.arg(type)
  if(type %in% c("I", "II", "III"))
    type <- as.character(as.integer(as.roman(type)))
  if(any(is.na(vcov(object))))
    stop("anova table not available with non-finite values in vcov(object)")
  # Get list of contrast matrices (L) - one for each model term:
  L_list <- if(type == "1") {
    get_contrasts_type1(object)
  } else if(type == "2") {
    get_contrasts_type2_unfolded(object)
  } else if(type == "2b") {
    get_contrasts_type2(object)
  } else if(type == "3") {
    get_contrasts_type3(object)
  } else if(type == "marginal") {
    get_contrasts_marginal(object)
  } else {
    stop("'type' not recognized")
  }
  # Add cols to L for alpha, zeta and lambda params:
  L_list <- adjust_contrast_for_param(object, L_list)
  # Get F-test for each term and collect in table:
  table <- rbindall(lapply(L_list, function(L) contestMD(object, L)))
  # Format ANOVA table and return:
  if(length(nm <- setdiff(names(L_list), rownames(table)))) {
    tab <- array(NA_real_, dim=c(length(nm), ncol(table)),
                 dimnames = list(nm, colnames(table)))
    table <- rbind(table, tab)[names(L_list), ]
  }
  # Format 'type':
  type <- if(type == "marginal") {
    "Marginal"
  } else if(grepl("b|c", type)) {
    alph <- gsub("[0-9]", "", type)
    paste0("Type ", as.roman(as.integer(gsub("b|c", "", type))), alph)
  } else paste("Type", as.roman(as.integer(type)))
  attr(table, "heading") <-
    paste(type, "Analysis of Deviance Table with Wald chi-square tests\n")
  attr(table, "hypotheses") <- L_list
  class(table) <- c("anova", "data.frame")
  table
}

adjust_contrast_for_param <- function(model, L) {
  nalpha <- length(model$alpha)
  nzeta <- if(is.null(model$zeta)) 0L else length(model$zeta)
  nlambda <- if(is.null(model$lambda)) 0L else length(model$lambda)
  nextra <- nzeta + nlambda
  # pre and post add extra cols to L:
  add <- function(L) {
    pre <- array(0, dim=c(nrow(L), nalpha))
    post <- array(0, dim=c(nrow(L), nextra))
    cbind(pre, L[, -1L, drop=FALSE], post)
  }
  if(!is.list(L)) add(L) else lapply(L, add)
}

model_matrix <- function(object, ...) {
  if(!inherits(object, "clm")) return(model.matrix(object, ...))
  X <- model.matrix(object)$X
  if(!any(object$aliased$beta)) return(X)
  remove <- c(FALSE, object$aliased$beta)
  newX <- X[, !remove, drop=FALSE]
  attr(newX, "assign") <- attr(X, "assign")[!remove]
  contr <- attr(X, "contrasts")
  if(!is.null(contr)) attr(newX, "contrasts") <- contr
  newX
}

contestMD <- function(model, L, rhs=0, eps=sqrt(.Machine$double.eps), ...) {
  mk_Qtable <- function(Qvalue, df) {
    pvalue <- pchisq(q=Qvalue, df=df, lower.tail=FALSE)
    data.frame("Df"=df, "Chisq"=Qvalue, "Pr(>Chisq)"=pvalue, 
               check.names = FALSE)
  }
  if(!is.matrix(L)) L <- matrix(L, ncol=length(L))
  stopifnot(is.matrix(L), is.numeric(L),
            ncol(L) == length(coef(model, na.rm=TRUE)))
  if(length(rhs) == 1L) rhs <- rep(rhs, nrow(L))
  stopifnot(is.numeric(rhs), length(rhs) == nrow(L))
  if(nrow(L) == 0L) { # May happen if there are no fixed effects
    x <- numeric(0L)
    return(mk_Qtable(x, x))
  }
  if(any(is.na(L))) return(mk_Qtable(NA_real_, NA_real_))
  beta <- coef(model, na.rm=TRUE)
  vcov_beta <- vcov(model)
  # Adjust beta for rhs:
  if(!all(rhs == 0)) beta <- beta - drop(MASS::ginv(L) %*% rhs)
  # Compute Var(L beta) and eigen-decompose:
  VLbeta <- L %*% vcov_beta %*% t(L) # Var(contrast) = Var(Lbeta)
  eig_VLbeta <- eigen(VLbeta)
  P <- eig_VLbeta$vectors
  d <- eig_VLbeta$values
  tol <- max(eps * d[1], 0)
  pos <- d > tol
  q <- sum(pos) # rank(VLbeta)
  if(q < nrow(L) && !all(rhs == 0))
    warning("Contrast is rank deficient and test may be affected")
  if(q <= 0) { # shouldn't happen if L is a proper contrast
    x <- numeric(0L)
    return(mk_Qtable(x, x))
  }
  PtL <- crossprod(P, L)[1:q, ]
  # Compute t-squared values and Q-value:
  t2 <- drop(PtL %*% beta)^2 / d[1:q]
  Qvalue <- sum(t2) 
  mk_Qtable(Qvalue, df=q)
}

##############################################
######## get_contrasts_type3
##############################################
get_contrasts_type3 <- function(model, which=NULL) {
  term_names <- attr(terms(model), "term.labels")
  # Extract original design matrix:
  Xorig <- model_matrix(model)
  # Assumes Xorig is full (column) rank
  if(is.null(which)) {
    which <- term_names
    # If model has at most one term return Type I contrasts:
    if(ncol(Xorig) <= 1L || length(term_names) <= 1L)
      return(get_contrasts_type1(model))
  } else stopifnot(is.character(which), all(which %in% term_names))
  
  # Extract contrast coding in Xorig:
  codings <- unlist(attr(Xorig, "contrast"))
  # If only treatment contrasts are used we can just return the type 3
  # contrasts for contr.treatment coding:
  if(length(codings) > 0 &&
     all(is.character(codings)) && all(codings %in% c("contr.treatment")))
    return(extract_contrasts_type3(model, X=Xorig))
  # otherwise we need to map the type III contrasts to whatever contrast
  # coding was used:
  X <- get_model_matrix(model, type="remake", contrasts="contr.treatment")
  # Ensure that X is full (column) rank:
  X <- ensure_full_rank(X, silent=TRUE, test.ans=FALSE)
  # Extract contrasts assuming contr.treatment coding:
  type3ctr <- extract_contrasts_type3(model, X=X)
  map <- zapsmall(ginv(X) %*% Xorig) # Maps between contrast codings
  rownames(map) <- colnames(X)
  lapply(type3ctr[which], function(L) L %*% map)
}


##############################################
######## get_contrasts_type1
##############################################
get_contrasts_type1 <- function(model) {
  terms <- terms(model)
  X <- model_matrix(model)
  nalpha <- length(model$alpha)
  p <- ncol(X)
  if(p == 0L) return(list(matrix(numeric(0L), nrow=0L))) # no fixef
  if(p == 1L && attr(terms, "intercept")) # intercept-only model
    return(list(matrix(numeric(0L), ncol=nalpha)))
  # Compute 'normalized' doolittle factorization of XtX:
  L <- if(p == 1L) matrix(1L) else t(doolittle(crossprod(X))$L)
  dimnames(L) <- list(colnames(X), colnames(X))
  # Determine which rows of L belong to which term:
  ind.list <- term2colX(terms, X)[attr(terms, "term.labels")]
  lapply(ind.list, function(rows) L[rows, , drop=FALSE])
}

##############################################
######## get_contrasts_type2_unfolded
##############################################
get_contrasts_type2_unfolded <- function(model, which=NULL) {
  # Computes the 'genuine type II contrast' for all terms that are
  # contained in other terms. For all terms which are not contained in other
  # terms, the simple marginal contrast is computed.
  X <- model_matrix(model)
  Terms <- terms(model)
  term_names <- attr(Terms, "term.labels")
  if(is.null(which)) {
    which <- term_names
    # If model has at most one term return Type I contrasts:
    if(ncol(X) <= 1L || length(term_names) <= 1L)
      return(get_contrasts_type1(model))
  } else stopifnot(is.character(which), all(which %in% term_names))
  
  is_contained <- containment(model)
  do_marginal <- names(is_contained)[sapply(is_contained, length) == 0L]
  do_type2 <- setdiff(term_names, do_marginal)
  
  if(!length(do_marginal)) list() else
    Llist <- get_contrasts_marginal(model, which=do_marginal)
  if(length(do_type2))
    Llist <- c(Llist, get_contrasts_type2(model, which=do_type2))
  Llist[term_names]
}

##############################################
######## get_contrasts_type2
##############################################
get_contrasts_type2 <- function(model, which=NULL) {
  # Computes the type 2 contrasts - either for all terms or for those
  # included in 'which' (a chr vector naming model terms).
  # returns a list
  X <- model_matrix(model)
  nalpha <- length(model$alpha)
  terms <- terms(model)
  data_classes <- attr(terms(model), "dataClasses")
  if(is.null(asgn <- attr(X, "assign")))
    stop("design matrix 'X' should have a non-null 'assign' attribute")
  term_names <- attr(terms, "term.labels")
  if(is.null(which)) {
    which <- term_names
    # If model has at most one term return Type I contrasts:
    if(ncol(X) <= 1L || length(term_names) <= 1L)
      return(get_contrasts_type1(model))
  } else stopifnot(is.character(which), all(which %in% term_names))
  which <- setNames(as.list(which), which)
  
  # Compute containment:
  is_contained <- containment(model)
  
  # Compute term asignment list: map from terms to columns in X
  has_intercept <- attr(terms, "intercept") > 0
  col_terms <- if(has_intercept) c("(Intercept)", term_names)[asgn + 1] else
    term_names[asgn[asgn > 0]]
  if(!length(col_terms) == ncol(X)) # should never happen.
    stop("An error happended when computing Type II contrasts")
  term2colX <- split(seq_along(col_terms), col_terms)[unique(col_terms)]
  
  # Compute contrast for each term - return as named list:
  lapply(which, function(term) {
    # Reorder the cols in X to [, unrelated_to_term, term, contained_in_term]
    cols_term <- unlist(term2colX[c(term, is_contained[[term]])])
    Xnew <- cbind(X[, -cols_term, drop=FALSE], X[, cols_term, drop=FALSE])
    # Compute order of terms in Xnew:
    newXcol_terms <- c(col_terms[-cols_term], col_terms[cols_term])
    # Compute Type I contrasts for the reordered X:
    Lc <- t(doolittle(crossprod(Xnew))$L)
    dimnames(Lc) <- list(colnames(Xnew), colnames(Xnew))
    # Extract rows for term and get original order of columns:
    Lc[newXcol_terms == term, colnames(X), drop=FALSE]
  })
}

##############################################
######## get_contrasts_marginal
##############################################
#' @importFrom stats model.matrix terms
get_contrasts_marginal <- function(model, which=NULL) {
  # Computes marginal contrasts.
  #
  # No tests of conformity with coefficients are implemented
  #
  # returns a list
  X <- model_matrix(model)
  terms <- terms(model)
  term_names <- attr(terms, "term.labels")
  if(is.null(which)) {
    which <- term_names
    # If model has at most one term return Type I contrasts:
    if(ncol(X) <= 1L || length(term_names) <= 1L)
      return(get_contrasts_type1(model))
  } else stopifnot(is.character(which), all(which %in% term_names))

  # Compute map from terms to columns in X and contrasts matrix
  term2colX <- term2colX(terms, X)
  L <- structure(diag(ncol(X)), dimnames = list(colnames(X), colnames(X)))

  # Extract contrast for each term - return as named list:
  which <- setNames(as.list(which), which)
  lapply(which, function(term) {
    L[term2colX[[term]], , drop=FALSE]
  })
}

##############################################
######## rbindall
##############################################
rbindall <- function(...) do.call(rbind, ...)

cbindall <- function(...) do.call(cbind, ...)