File: clm.fitter.R

package info (click to toggle)
r-cran-ordinal 2022.11-16-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 1,856 kB
  • sloc: ansic: 979; sh: 13; makefile: 5
file content (419 lines) | stat: -rw-r--r-- 16,176 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
#############################################################################
##    Copyright (c) 2010-2022 Rune Haubo Bojesen Christensen
##
##    This file is part of the ordinal package for R (*ordinal*)
##
##    *ordinal* is free software: you can redistribute it and/or modify
##    it under the terms of the GNU General Public License as published by
##    the Free Software Foundation, either version 2 of the License, or
##    (at your option) any later version.
##
##    *ordinal* is distributed in the hope that it will be useful,
##    but WITHOUT ANY WARRANTY; without even the implied warranty of
##    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
##    GNU General Public License for more details.
##
##    A copy of the GNU General Public License is available at
##    <https://www.r-project.org/Licenses/> and/or
##    <http://www.gnu.org/licenses/>.
#############################################################################
## This file contains:
## Functions to fit/estimate CLMs (clm.fit.NR, clm.fit.optim) and
## functions implementing the negative log-likelihood, its gradient
## and hessian (.nll, .grad, .hess). These functions are rarely to be
## called directly from outside the package.

clm.fit.NR <-
  function(rho, control = list())
### The main work horse: Where the actual fitting of the clm goes on.
### Fitting the clm via modified Newton-Raphson with step halving.

### -------- Assumes the existence of the following functions:
### clm.nll - negative log-likelihood
### clm.grad - gradient of nll wrt. par
### clm.hess - hessian of nll wrt. par
### Trace - for trace information
{
    control <- do.call(clm.control, control)
    stepFactor <- 1
    innerIter <- modif.iter <- abs.iter <- 0L
    conv <- 2L  ## Convergence flag (iteration limit reached)
    nll <- rho$clm.nll(rho)
    if(!is.finite(nll))
        stop("Non-finite log-likelihood at starting value")
    ## do.newton <-
    ## rel.conv <- FALSE
    ## stephalf <- TRUE

    ## Newton-Raphson algorithm:
    for(i in 1:(control$maxIter + 1L)) {
        gradient <- rho$clm.grad(rho)
        maxGrad <- max(abs(gradient))
        if(control$trace > 0) {
            Trace(iter=i+innerIter-1, stepFactor, nll, maxGrad,
                  rho$par, first=(i==1))
            if(control$trace > 1 && i > 1) {
                cat("\tgrad: ")
                cat(paste(formatC(gradient, digits=3, format="e")))
                cat("\n\tstep: ")
                cat(paste(formatC(-step, digits=3, format="e")))
                cat("\n\teigen: ")
                cat(paste(formatC(eigen(hessian, symmetric=TRUE,
                                        only.values=TRUE)$values, digits=3,
                                  format="e")))
                cat("\n")
            }
        }
        abs.conv <- (maxGrad < control$gradTol)
        if(abs.conv) abs.iter <- abs.iter + 1L
        hessian <- rho$clm.hess(rho)
        ## Compute cholesky factor of Hessian: ch = Ut U
        ch <- try(chol(hessian), silent=TRUE)
### NOTE: solve(hessian, gradient) is not good enough because it will
### compute step for negative-definite Hessians and we don't want
### that.

### OPTION: What if Hessian is closely singular but slightly positive?
### Could we do something better in that case?
        if(inherits(ch, "try-error")) {
            if(abs.conv) { ## step.ok not true.
                conv <- 1L
                break ## cannot meet relative criterion.
            }
            ## If Hessian is non-positive definite:
            min.ev <- min(eigen(hessian, symmetric=TRUE,
                                only.values=TRUE)$values)
            inflation.factor <- 1
            ## Inflate diagonal of Hessian to make it positive definite:
            inflate <- abs(min.ev) + inflation.factor
            hessian <- hessian + diag(inflate, nrow(hessian))
            if(control$trace > 0)
                cat(paste("Hessian is singular at iteration", i-1, "inflating diagonal with",
                          formatC(inflate, digits=5, format="f"), "\n"))
            ch <- try(chol(hessian), silent=TRUE)
            if(inherits(ch, "try-error"))
                stop(gettextf("Cannot compute Newton step at iteration %d",
                              i-1), call.=FALSE)
            modif.iter <- modif.iter + 1L
            ## do.newton <- FALSE
        } else
            modif.iter <- 0L
        if(modif.iter >= control$maxModIter) {
            conv <- 4L
            break
        }

        ## solve U'y = g for y, then
        ## solve U step = y for step:
        step <- c(backsolve(ch, backsolve(ch, gradient, transpose=TRUE)))
        rel.conv <- (max(abs(step)) < control$relTol)
        ## Test if step is in a descent direction -
        ## otherwise use step <- grad / max|grad|:
        ## if(crossprod(gradient, step) < 0) {
        ##     if(control$trace > 0)
        ##         cat("Newton step is not in descent direction; using gradient instead\n")
        ##     step <- c(gradient / max(abs(gradient)))
        ## } else
        if(abs.conv && rel.conv) {
            conv <- 0L
            ## no need to step back as stephalf was false so the new
            ## par are just better.
            break
        }

        ## update parameters:
        rho$par <- rho$par - stepFactor * step
        nllTry <- rho$clm.nll(rho)
        lineIter <- 0
        stephalf <- (nllTry > nll)
### NOTE: sometimes nllTry > nll just due to noise, so we also check
### reduction in gradient for small diffs:
        if(stephalf && abs(nll - nllTry) < 1e-10)
            stephalf <- maxGrad < max(abs(rho$clm.grad(rho)))

        ## Assess convergence:
        ## (only attempt to sattisfy rel.conv if abs.conv is true and
        ## it is possible to take the full newton step)
### OPTION: And if 'step' is not close to 1 or 1/2, but
### small. Otherwise this just indicates that the parameter is
### infinite.
        ## if(abs.conv && !step.ok) {
        if(abs.conv && stephalf) {
            conv <- 1L
            ## we need to step back to the par for which abs.conv
            ## was true:
            rho$par <- rho$par + stepFactor * step
            rho$clm.nll(rho)
            break
        }
        ## if(abs.conv && rel.conv) {
        ##     conv <- 0L
        ##     rho$par <- rho$par + stepFactor * step
        ##     rho$clm.nll(rho)
        ##     ## no need to step back as stephalf was false so the new
        ##     ## par are just better.
        ##     break
        ## }
        if(abs.conv && abs.iter >= 5L) {
            ## Cannot satisy rel.conv in 5 iterations after satisfying
            ## abs.conv. Probably some parameters are unbounded.
            conv <- 1L
            break
        }
        ## Step halving if nll increases:
        while(stephalf) {
            stepFactor <- stepFactor/2
            rho$par <- rho$par + stepFactor * step
            nllTry <- rho$clm.nll(rho)
            lineIter <- lineIter + 1
            if(control$trace > 0) {
                cat("step halving:\n")
                cat("nll reduction: ", formatC(nll - nllTry, digits=5, format="e"), "\n")
                Trace(i+innerIter-1, stepFactor, nll, maxGrad,
                      rho$par, first = FALSE)
            }
            if(lineIter > control$maxLineIter){
                conv <- 3L
                break
            }
            innerIter <- innerIter + 1
            stephalf <- (nllTry > nll)
            if(stephalf && abs(nll - nllTry) < 1e-10)
                stephalf <- (maxGrad < max(abs(rho$clm.grad(rho))))
        } ## end step halving
        if(conv == 3L) break

        if(control$trace > 0)
            cat("nll reduction: ", formatC(nll - nllTry, digits=5, format="e"), "\n")
        nll <- nllTry
        ## Double stepFactor if needed:
        stepFactor <- min(1, 2 * stepFactor)
    } ## end Newton iterations
    message <- switch(as.character(conv),
                      "0" = "Absolute and relative convergence criteria were met",
                      "1" = "Absolute convergence criterion was met, but relative criterion was not met",
                      "2" = "iteration limit reached",
                      "3" = "step factor reduced below minimum",
                      "4" = "maximum number of consecutive Newton modifications reached")
    if(conv <= 1L && control$trace > 0) {
        cat("\nOptimizer converged! ", message, fill = TRUE)
    }
    if(conv > 1 && control$trace > 0) {
        cat("\nOptimization failed ", message, fill = TRUE)
    }
    ## return results:
    gradient <- c(rho$clm.grad(rho))
    res <- list(par = rho$par,
                gradient = gradient, ##as.vector(gradient),
                ## Hessian = hessian,
                Hessian = rho$clm.hess(rho), ## ensure hessian is evaluated
                ## at optimum
                logLik = -nll,
                convergence = conv,
                ## 0: abs and rel criteria meet
                ## 1: abs criteria meet, rel criteria not meet
                ## 2: iteration limit reached
                ## 3: step factor reduced below minium
                message = message,
                maxGradient = max(abs(gradient)),
                niter = c(outer = i-1, inner = innerIter),
                fitted = rho$fitted)
    return(res)
}


clm.fit.optim <-
  function(rho, method = c("ucminf", "nlminb", "optim"), control=list())
{
  method <- match.arg(method)
  ## optimize the likelihood:
  optRes <-
    switch(method,
           "nlminb" = nlminb(rho$par,
             function(par) clm.nll(rho, par),
             function(par) clm.grad_direct(rho, par),
             control=control),
           "ucminf" = ucminf(rho$par,
             function(par) clm.nll(rho, par),
             function(par) clm.grad_direct(rho, par),
             control=control),
           "optim" = optim(rho$par,
             function(par) clm.nll(rho, par),
             function(par) clm.grad_direct(rho, par),
             method="BFGS",
             control=control)
           )
  ## save results:
  rho$par <- optRes[[1]]
  res <- list(par = rho$par,
              logLik = -clm.nll(rho),
              gradient = clm.grad(rho),
              Hessian = clm.hess(rho),
              fitted = rho$fitted)
  res$maxGradient = max(abs(res$gradient))
  res$optRes <- optRes
  res$niter <- switch(method, "nlminb" = optRes$evaluations,
                      "ucminf" = c(optRes$info["neval"], 0),
                      "optim" = optRes$counts)
  res$convergence <-
    switch(method, "nlminb" = optRes$convergence,
           "ucminf" = optRes$convergence,
           "optim" = optRes$convergence)

  return(res)
}

clm.fit.flex <- function(rho, control=list()) {
  lwr <- if(rho$link == "Aranda-Ordaz") 
    c(rep(-Inf, length(rho$par) - 1), 1e-5) else rep(-Inf, length(rho$par))
  ## optimize the likelihood:
  optRes <- nlminb(rho$par, function(par, rho) clm.nll.flex(rho, par), 
                   lower=lwr, rho=rho)
  ## save results:
  rho$par <- optRes$par
  res <- list(par = rho$par,
              lambda = setNames(rho$par[length(rho$par)], "lambda"),
              logLik = -clm.nll.flex(rho),
              gradient = numDeriv::grad(func=function(par, rho) clm.nll.flex(rho, par), 
                                        x = rho$par, rho=rho),
              Hessian = numDeriv::hessian(func=function(par, rho) clm.nll.flex(rho, par), 
                                          x = rho$par, rho=rho),
              fitted = rho$fitted)
  res$maxGradient = max(abs(res$gradient))
  res$optRes <- optRes
  res$niter <- optRes$evaluations
  res$convergence <- optRes$convergence
  return(res)
}

clm.nll.flex <- function(rho, par) {
  if(!missing(par)) rho$par <- par
  with(rho, {
    if(k > 0)
      sigma <- Soff * exp(drop(S %*% par[n.psi + 1:k]))
    ### NOTE: we have to divide by sigma even if k=0 since there may be an
    ### offset but no predictors in the scale model:
    eta1 <- (drop(B1 %*% par[1:n.psi]) + o1)/sigma
    eta2 <- (drop(B2 %*% par[1:n.psi]) + o2)/sigma
    fitted <- pfun(eta1, par[length(par)]) - pfun(eta2, par[length(par)])
  })
  if(all(is.finite(rho$fitted)) && all(rho$fitted > 0))
    ### NOTE: Need test here because some fitted <= 0 if thresholds are
    ### not ordered increasingly.
    -sum(rho$wts * log(rho$fitted))
  else Inf
}

clm.nll <- function(rho, par) {
  if(!missing(par)) rho$par <- par
  with(rho, {
    if(k > 0)
      sigma <- Soff * exp(drop(S %*% par[n.psi + 1:k]))
    ### NOTE: we have to divide by sigma even if k=0 since there may be an
    ### offset but no predictors in the scale model:
    eta1 <- (drop(B1 %*% par[1:n.psi]) + o1)/sigma
    eta2 <- (drop(B2 %*% par[1:n.psi]) + o2)/sigma
  })
  ### NOTE: getFitted is not found from within rho, so we have to
  ### evalueate it outside of rho
  rho$fitted <- getFittedC(rho$eta1, rho$eta2, rho$link, rho$par[length(rho$par)])
  if(all(is.finite(rho$fitted)) && all(rho$fitted > 0))
    ### NOTE: Need test here because some fitted <= 0 if thresholds are
    ### not ordered increasingly.
    -sum(rho$wts * log(rho$fitted))
  else Inf
}

## clm.nll <- function(rho) { ## negative log-likelihood
## ### For linear models
##   with(rho, {
##     eta1 <- drop(B1 %*% par) + o1
##     eta2 <- drop(B2 %*% par) + o2
##   })
## ### NOTE: getFitted is not found from within rho, so we have to
## ### evalueate it outside of rho
##   rho$fitted <- getFittedC(rho$eta1, rho$eta2, rho$link)
##   if(all(rho$fitted > 0))
## ### NOTE: Need test here because some fitted <= 0 if thresholds are
## ### not ordered increasingly.
## ### It is assumed that 'all(is.finite(pr)) == TRUE'
##     -sum(rho$wts * log(rho$fitted))
##   else Inf
## }

## clm.grad <- function(rho) { ## gradient of the negative log-likelihood
## ### return: vector of gradients
## ### For linear models
##   with(rho, {
##     p1 <- dfun(eta1)
##     p2 <- dfun(eta2)
##     wtpr <- wts/fitted
##     dpi.psi <- B1 * p1 - B2 * p2
##     -crossprod(dpi.psi, wtpr)
## ### NOTE: It is assumed that all(fitted > 0) == TRUE and that
## ### all(is.finite(c(p1, p2))) == TRUE
##   })
## }

clm.grad <- function(rho) {
### requires that clm.nll has been called prior to
### clm.grad.
  with(rho, {
    p1 <- if(!nlambda) dfun(eta1) else dfun(eta1, lambda)
    p2 <- if(!nlambda) dfun(eta2) else dfun(eta2, lambda)
    wtpr <- wts/fitted
    C2 <- B1*p1/sigma - B2*p2/sigma
    if(k <= 0) return(-crossprod(C2, wtpr))
    C3 <- -(eta1 * p1 - eta2 * p2) * S
    return(-crossprod(cbind(C2, C3), wtpr))
### NOTE: C2 and C3 are used by clm.hess
  })
}

clm.grad_direct <- function(rho, par) {
### does not require that clm.nll has been called prior to
### clm.grad.
    clm.nll(rho, par)
    clm.grad(rho)
}

## clm.hess <- function(rho) { ## hessian of the negative log-likelihood
## ### return Hessian matrix
## ### For linear models
##   with(rho, {
##     dg.psi <- crossprod(B1 * gfun(eta1) * wtpr, B1) -
##       crossprod(B2 * gfun(eta2) * wtpr, B2)
##     -dg.psi + crossprod(dpi.psi, (dpi.psi * wtpr / fitted))
## ### NOTE: It is assumed that all(fitted > 0) == TRUE and that
## ### all(is.finite(c(g1, g2))) == TRUE
##   })
## }

clm.hess <- function(rho) {
  ### requires that clm.grad has been called prior to this.
  with(rho, {
    g1 <- if(!nlambda) gfun(eta1) else gfun(eta1, lambda)
    g2 <- if(!nlambda) gfun(eta2) else gfun(eta2, lambda)
    wtprpr <- wtpr/fitted ## Phi3
    dg.psi <- crossprod(B1 * g1 * wtpr / sigma^2, B1) -
      crossprod(B2 * g2 * wtpr / sigma^2, B2)
    ## upper left:
    D <- dg.psi - crossprod(C2, (C2 * wtprpr))
    if(k <= 0) return(-D) ## no scale predictors
    ## upper right (lower left transpose):
    wtprsig <- wtpr/sigma
    epg1 <- p1 + g1*eta1
    epg2 <- p2 + g2*eta2
    Et <- crossprod(B1, -wtprsig * epg1 * S) -
      crossprod(B2, -wtprsig * epg2 * S) -
      crossprod(C2, wtprpr * C3)
    ## lower right:
    F <- -crossprod(S, wtpr * ((eta1*p1 - eta2*p2)^2 / fitted -
                                 (eta1*epg1 - eta2*epg2)) * S)
    ## combine and return hessian:
    H <- rbind(cbind(D    , Et),
               cbind(t(Et), F))
    return(-H)
  })
}