File: clm.simple.R

package info (click to toggle)
r-cran-ordinal 2022.11-16-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 1,856 kB
  • sloc: ansic: 979; sh: 13; makefile: 5
file content (148 lines) | stat: -rw-r--r-- 5,788 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
#############################################################################
##    Copyright (c) 2010-2022 Rune Haubo Bojesen Christensen
##
##    This file is part of the ordinal package for R (*ordinal*)
##
##    *ordinal* is free software: you can redistribute it and/or modify
##    it under the terms of the GNU General Public License as published by
##    the Free Software Foundation, either version 2 of the License, or
##    (at your option) any later version.
##
##    *ordinal* is distributed in the hope that it will be useful,
##    but WITHOUT ANY WARRANTY; without even the implied warranty of
##    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
##    GNU General Public License for more details.
##
##    A copy of the GNU General Public License is available at
##    <https://www.r-project.org/Licenses/> and/or
##    <http://www.gnu.org/licenses/>.
#############################################################################
## This file contains:
## A implementation of simple CLMs (simple_clm), i.e., CLMs without
## scale and nominal effects.

simple_clm <-
  function(formula, data, weights, start, subset, offset,
           doFit = TRUE, na.action, contrasts, model = TRUE,
           control = list(),
           link = c("logit", "probit", "cloglog", "loglog"),
           threshold = c("flexible", "symmetric", "symmetric2", "equidistant"), ...)
{
  ## Initial argument matching and testing:
  mc <- match.call(expand.dots = FALSE)
  link <- match.arg(link)
  threshold <- match.arg(threshold)
  ## check for presence of formula:
  if(missing(formula)) stop("Model needs a formula")
  if(missing(contrasts)) contrasts <- NULL
  ## set control parameters:
  control <- do.call(clm.control, c(control, list(...)))

  ## Compute: y, X, wts, off, mf:
  if (missing(data))
    data <- environment(formula)
  mf <- match.call(expand.dots = FALSE)
  m <- match(c("formula", "data", "subset", "weights", "na.action",
               "offset"), names(mf), 0L)
  mf <- mf[c(1L, m)]
  mf$drop.unused.levels <- TRUE
  mf[[1L]] <- as.name("model.frame")
  mf <- eval(mf, parent.frame())
  ## Return model.frame?
  if(control$method == "model.frame") return(mf)
  y <- model.response(mf, "any") ## any storage mode
  if(!is.factor(y)) stop("response needs to be a factor", call.=FALSE)
  ## design matrix:
  mt <- attr(mf, "terms")
  X <- if (!is.empty.model(mt))
    model.matrix(mt, mf, contrasts)
  else cbind("(Intercept)" = rep(1, NROW(y)))
  ## Test for intercept in X:
  Xint <- match("(Intercept)", colnames(X), nomatch = 0)
  if(Xint <= 0) {
    X <- cbind("(Intercept)" = rep(1, NROW(y)), X)
    warning("an intercept is needed and assumed in 'formula'",
            call.=FALSE)
  } ## intercept in X is guaranteed.
  wts <- getWeights(mf)
  off <- getOffsetStd(mf)
  ylevels <- levels(droplevels(y[wts > 0]))
  frames <- list(y=y, ylevels=ylevels, X=X)

  ## Compute the transpose of the Jacobian for the threshold function,
  ## tJac and the names of the threshold parameters, alpha.names:
  frames <- c(frames, makeThresholds(ylevels, threshold))
  ## test for column rank deficiency in design matrices:
  frames <- drop.cols(frames, silent=TRUE)

  ## Set envir rho with variables: B1, B2, o1, o2, wts, fitted:
  rho <- clm.newRho(parent.frame(), y=frames$y, X=frames$X,
                    NOM=NULL, S=NULL,
                    weights=wts, offset=off, S.offset=NULL,
                    tJac=frames$tJac, control=control)

  ## Set starting values for the parameters:
  start <- set.start(rho, start=start, get.start=missing(start),
                     threshold=threshold, link=link, frames=frames)
  rho$par <- as.vector(start) ## remove attributes

  ## Set pfun, dfun and gfun in rho:
  setLinks(rho, link)

  ## Possibly return the environment rho without fitting:
  if(!doFit) return(rho)

  ## Fit the clm:
  if(control$method == "Newton")
    fit <- clm.fit.NR(rho, control)
  else
    fit <- clm.fit.optim(rho, control$method, control$ctrl)
### NOTE: we could add arg non.conv = c("error", "warn", "message") to
### allow non-converged fits to be returned.

  ## Modify and return results:
  res <- clm.finalize(fit, weights=wts,
                      coef.names=frames$coef.names,
                      aliased=frames$aliased)
  res$control <- control
  res$link <- link
  res$start <- start
  if(control$method == "Newton" &&
     !is.null(start.iter <- attr(start, "start.iter")))
    res$niter <- res$niter + start.iter
  res$threshold <- threshold
  res$call <- match.call()
  res$contrasts <- attr(frames$X, "contrasts")
  res$na.action <- attr(mf, "na.action")
  res$terms <- mt
  res$xlevels <- .getXlevels(mt, mf)
  res$tJac <- frames$tJac
  res$y.levels <- frames$ylevels
  ## Check convergence:
  conv <- conv.check(res, Theta.ok=TRUE, tol=control$tol)
  print.conv.check(conv, action=control$convergence) ## print convergence message
  res$vcov <- conv$vcov
  res$cond.H <- conv$cond.H
  res$convergence <- conv[!names(conv) %in% c("vcov", "cond.H")]
  res$info <- with(res, {
    data.frame("link" = link,
               "threshold" = threshold,
               "nobs" = nobs,
               "logLik" = formatC(logLik, digits=2, format="f"),
               "AIC" = formatC(-2*logLik + 2*edf, digits=2,
                 format="f"),
               "niter" = paste(niter[1], "(", niter[2], ")", sep=""),
### NOTE: iterations to get starting values for scale models *are*
### included here.
               "max.grad" = formatC(maxGradient, digits=2,
                 format="e")
               ## BIC is not part of output since it is not clear what
               ## the no. observations are.
               )
  })
  class(res) <- "clm"
  ## add model.frame to results list?
  if(model) res$model <- mf

  return(res)
}