File: clm.slice.R

package info (click to toggle)
r-cran-ordinal 2022.11-16-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 1,856 kB
  • sloc: ansic: 979; sh: 13; makefile: 5
file content (213 lines) | stat: -rw-r--r-- 7,192 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
#############################################################################
##    Copyright (c) 2010-2022 Rune Haubo Bojesen Christensen
##
##    This file is part of the ordinal package for R (*ordinal*)
##
##    *ordinal* is free software: you can redistribute it and/or modify
##    it under the terms of the GNU General Public License as published by
##    the Free Software Foundation, either version 2 of the License, or
##    (at your option) any later version.
##
##    *ordinal* is distributed in the hope that it will be useful,
##    but WITHOUT ANY WARRANTY; without even the implied warranty of
##    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
##    GNU General Public License for more details.
##
##    A copy of the GNU General Public License is available at
##    <https://www.r-project.org/Licenses/> and/or
##    <http://www.gnu.org/licenses/>.
#############################################################################
## This file contains:
## Methods to compute and plot likelihood-slices for clm objects.

slice <- function(object, ...) {
  UseMethod("slice")
}

slice.clm <-
  function(object, parm = seq_along(par), lambda = 3, grid = 1e2,
           quad.approx = TRUE, ...)
{
  ## argument matching and testing:
  stopifnot(is.numeric(lambda) && lambda > 0)
  stopifnot(is.numeric(grid) && grid >= 1)
  grid <- as.integer(round(grid))
  par <- coef(object, na.rm=TRUE)
  par.names <- names(par)
  npar <- length(par)
  stopifnot(length(parm) == length(unique(parm)))
  if(is.character(parm))
    parm <- match(parm, par.names, nomatch = 0)
### disallow character argument due to ambiguity?
  if(!all(parm %in% seq_along(par)))
    stop("invalid 'parm' argument")
  stopifnot(length(parm) > 0)
  parm <- as.integer(round(parm))
  ## parm is an integer vector indexing non-aliased coef.
  ml <- object$logLik
  parm.names <- par.names[parm]

  ## get environment corresponding to object:
  rho <- get_clmRho(object)
  ## rho <- update(object, doFit = FALSE)
  names(par) <- NULL
  rho$par <- par ## set rho$par to mle
  stopifnot(isTRUE(all.equal(rho$clm.nll(rho), -object$logLik)))

  ## generate sequence of parameters at which to compute the
  ## log-likelihood:
  curv <- sqrt(1/diag(object$Hessian)) ## curvature in nll wrt. par
  par.range <- par + curv %o% c(-lambda, lambda)
  ## par.seq - list of length npar with a sequence of values for each
  ## parameter :
  par.seq <- lapply(parm, function(ind) {
    seq(par.range[ind, 1], par.range[ind, 2], length = grid) })
  ## compute relative logLik for all par.seq for each par:
  logLik <- lapply(seq_along(parm), function(i) { # for each par
    rho$par <- par ## reset par values to MLE
    sapply(par.seq[[ i ]], function(par.val) { # for each par.seq value
      rho$par[ parm[i] ] <- par.val
      -rho$clm.nll(rho) - ml ## relative logLik
    })
  })

  ## collect parameter sequences and relative logLik in a list of
  ## data.frames:
  res <- lapply(seq_along(parm), function(i) {
    structure(data.frame(par.seq[[ i ]], logLik[[ i ]]),
              names = c(parm.names[i], "logLik"))
  })

  ## set attributes:
  names(res) <- parm.names
  attr(res, "original.fit") <- object
  attr(res, "mle") <- par[parm]
  class(res) <- "slice.clm"

  if(!quad.approx) return(res)
  ## compute quadratic approx to *positive* logLik:
  Quad <- function(par, mle, curv)
    -((mle - par)^2 / curv^2 / 2)
  for(i in seq_along(parm))
    res[[ i ]]$quad <-
      Quad(par.seq[[ i ]], par[ parm[i] ], curv[ parm[i] ])

  return(res)
}

plot.slice.clm <-
  function(x, parm = seq_along(x), type = c("quadratic", "linear"),
           plot.mle = TRUE,
           ask = prod(par("mfcol")) < length(parm) && dev.interactive(),
           ...)
{
  ## Initiala argument matching and testing:
  type <- match.arg(type)
  stopifnot(is.numeric(parm))
  parm <- as.integer(round(parm))
  of <- attr(x, "original.fit")
  par <- coef(of)
  ml <- of$logLik

  ## take the signed sqrt of nll and quad:
  if(type == "linear") {
    sgn.sqrt <- function(par, mle, logLik)
      (2 * (par > mle) - 1) * sqrt(-logLik)
    mle <- coef(attr(x, "original.fit"))
    for(i in parm) {
      x[[i]]$logLik <- sgn.sqrt(x[[i]][1], mle[i], x[[i]]$logLik)
      if(!is.null(x[[i]]$quad))
        x[[i]]$quad <- sgn.sqrt(x[[i]][1], mle[i], x[[i]]$quad)
    }
    ylab <- "Signed log-likelihood root"
  }
  else
    ylab <- "Relative log-likelihood"

  if(ask) {
    oask <- devAskNewPage(TRUE)
    on.exit(devAskNewPage(oask))
  }

  ## actual plotting:
  for(i in parm) {
    z <- x[[i]]
    plot(z[1:2], type = "l", ylab=ylab, ...)
    if(!is.null(z$quad))
      lines(z[[1]], z[[3]], lty = 2)
    if(plot.mle && type == "quadratic")
      ## abline(v = par[i])
      abline(v = attr(x, "mle")[i])
    ## abline(v = par[names(x)[i]])
  }

  return(invisible())
}

## slice.clm <-
##   function(object, parm = seq_along(par), lambda = 3, grid = 1e2,
##            quad.approx = TRUE, ...)
## {
##   ## argument matching and testing:
##   stopifnot(is.numeric(lambda) && lambda > 0)
##   stopifnot(is.numeric(grid) && grid >= 1)
##   grid <- as.integer(grid)
##   par <- coef(object)
##   par.names <- names(par)
##   npar <- length(par)
##   stopifnot(length(parm) == length(unique(parm)))
##   if(is.character(parm))
##     parm <- match(parm, par.names, nomatch = 0)
##   if(!all(parm %in% seq_along(par)))
##     stop("invalid 'parm' argument")
##   stopifnot(length(parm) > 0)
##   parm <- as.integer(parm)
##   ml <- object$logLik
##   parm.names <- par.names[parm]
##
##   ## get environment corresponding to object:
##   rho <- update(object, doFit = FALSE)
##   names(par) <- NULL
##   rho$par <- par ## set rho$par to mle
##   stopifnot(isTRUE(all.equal(rho$clm.nll(rho), -object$logLik)))
##
##   ## generate sequence of parameters at which to compute the
##   ## log-likelihood:
##   curv <- sqrt(1/diag(object$Hess)) ## curvature in nll wrt. par
##   par.range <- par + curv %o% c(-lambda, lambda)
##   ## par.seq - list of length npar:
##   par.seq <- sapply(parm, function(ind) {
##     seq(par.range[ind, 1], par.range[ind, 2], length = grid) },
##                     simplify = FALSE)
##   ## compute relative logLik for all par.seq for each par:
##   logLik <- lapply(seq_along(parm), function(i) { # for each par
##     rho$par <- par ## reset par values to MLE
##     sapply(par.seq[[ i ]], function(par.val) { # for each val
##       rho$par[ parm[i] ] <- par.val
##       -rho$clm.nll(rho) - ml ## relative logLik
##     })
##   })
##
##   ## collect results in a list of data.frames:
##   res <- lapply(seq_along(parm), function(i) {
##     structure(data.frame(par.seq[[ i ]], logLik[[ i ]]),
##               names = c(parm.names[i], "logLik"))
##   })
##
##   ## set attributes:
##   names(res) <- parm.names
##   attr(res, "original.fit") <- object
##   class(res) <- "slice.clm"
##
##   if(!quad.approx) return(res)
##   ## compute quadratic approx to *positive* logLik:
##   Quad <- function(par, mle, curv)
##     -((mle - par)^2 / curv^2 / 2)
##   for(i in seq_along(parm))
##     res[[ i ]]$quad <-
##       Quad(par.seq[[ i ]], par[ parm[i] ], curv[ parm[i] ])
##
##   return(res)
## }