1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300
|
#############################################################################
## Copyright (c) 2010-2022 Rune Haubo Bojesen Christensen
##
## This file is part of the ordinal package for R (*ordinal*)
##
## *ordinal* is free software: you can redistribute it and/or modify
## it under the terms of the GNU General Public License as published by
## the Free Software Foundation, either version 2 of the License, or
## (at your option) any later version.
##
## *ordinal* is distributed in the hope that it will be useful,
## but WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
## GNU General Public License for more details.
##
## A copy of the GNU General Public License is available at
## <https://www.r-project.org/Licenses/> and/or
## <http://www.gnu.org/licenses/>.
#############################################################################
## This file contains:
## Functions to assess and check convergence of CLMs. Some
## functions/methods are exported and some are used internally in
## clm().
convergence <- function(object, ...) {
UseMethod("convergence")
}
convergence.clm <-
function(object, digits = max(3, getOption("digits") - 3),
tol = sqrt(.Machine$double.eps), ...)
### Results: data.frame with columns:
### Estimate
### Std. Error
### Gradient - gradient of the coefficients at optimizer termination
### Error - the signed error in the coefficients at termination
### Rel. Error - the relative error in the coefficeints at termination
###
### The (signed) Error is determined as the Newton step, so this is
### only valid close to the optimum where the likelihood function is
### quadratic.
###
### The relative error equals step/Estimate.
{
## get info table and coef-table:
info <- object$info[c("nobs", "logLik", "niter", "max.grad", "cond.H")]
## Initialize coef-table with NAs:
coefs <- coef(object, na.rm=TRUE)
g <- object$gradient
H <- object$Hessian
tab <- matrix(NA_real_, nrow=length(coefs), ncol=6L,
dimnames=list(names(coef(object, na.rm=TRUE)),
c("Estimate", "Std.Err", "Gradient",
"Error", "Cor.Dec", "Sig.Dig")))
tab[, c(1L, 3L)] <- cbind(coefs, g)
res <- list(info=info, coefficients=tab, original.fit=object)
class(res) <- "convergence.clm"
if(!all(is.finite(H))) {
warning("non-finite values in Hessian: illegitimate model fit")
return(res)
}
## Get eigen values of Hessian:
res$eigen.values <- e.val <-
eigen(H, symmetric=TRUE, only.values=TRUE)$values
## Compute Cholesky factor of Hessian:
ch <- try(chol(H), silent=TRUE)
if(any(abs(e.val) <= tol) || inherits(ch, "try-error")) {
return(res)
}
## Hessian is positive definite:
## Compute approximate error in the coefficients:
step <- c(backsolve(ch, backsolve(ch, g, transpose=TRUE)))
if(max(abs(step)) > 1e-2)
warning("convergence assessment may be unreliable ",
"due to large numerical error")
## Compute approximate error in the log-likelihood function:
env <- get_clmRho(object)
## Note: safer to get env this way.
## env <- update(object, doFit=FALSE)
env$par <- coef(object, na.rm=TRUE) - step
new.logLik <- -env$clm.nll(env)
new.max.grad <- max(abs(env$clm.grad(env)))
if(new.max.grad > max(abs(g)) && max(abs(step)) > tol)
warning("Convergence assessment may be unreliable: ",
"please assess the likelihood with slice()")
### NOTE: we only warn if step is larger than a tolerance, since if
### step \sim 1e-16, the max(abs(grad)) may increase though stay
### essentially zero.
logLik.err <- object$logLik - new.logLik
err <- format.pval(logLik.err, digits=2, eps=1e-10)
if(!length(grep("<", err)))
err <- formatC(as.numeric(err), digits=2, format="e")
res$info$logLik.Error <- err
## Fill in the coef-table:
se <- sqrt(diag(chol2inv(ch)))
res$coefficients[, c(2, 4:6)] <-
cbind(se, step, cor.dec(step),
signif.digits(coefs, step))
res
}
print.convergence.clm <-
function(x, digits = max(3, getOption("digits") - 3), ...)
{
## Prepare for printing:
print(x$info, row.names=FALSE, right=FALSE)
cat("\n")
tab.print <- coef(x)
for(i in 1:2)
tab.print[,i] <- format(c(coef(x)[,i]), digits=digits)
for(i in 3:4) tab.print[,i] <-
format(c(coef(x)[,i]), digits=max(1, digits - 1))
print(tab.print, quote=FALSE, right=TRUE, ...)
## Print eigen values:
cat("\nEigen values of Hessian:\n")
cat(format(x$eigen.values, digits=digits), "\n")
conv <- x$original.fit$convergence
cat("\nConvergence message from clm:\n")
for(i in seq_along(conv$code)) {
Text <- paste("(", conv$code[i], ") ", conv$messages[i], sep="")
cat(Text, "\n")
}
if(!is.null(alg.text <- conv$alg.message))
cat(paste("In addition:", alg.text), "\n")
cat("\n")
## for(i in seq_along(conv$code)) {
## cat("Code: Message:\n", fill=TRUE)
## cat(conv$code[i], " ", conv$message[i], "\n", fill=TRUE)
## }
## if(!is.null(alg.text <- conv$alg.message)) {
## cat("\nIn addition: ", alg.text, "\n\n", fill=TRUE)
## }
return(invisible(x))
}
cor.dec <- function(error) {
### computes the no. correct decimals in a number if 'error' is the
### error in the number.
### The function is vectorized.
xx <- -log10(abs(error))
lead <- floor(xx)
res <- ifelse(xx < lead - log10(.5), lead-1, lead)
res[abs(error) >= .05] <- 0
as.integer(round(res))
}
signif.digits <- function(value, error) {
### Determines the number of significant digits in 'value' if the
### absolute error in 'value' is 'error'.
### The function is vectorized.
res <- cor.dec(error) + ceiling(log10(abs(value)))
res[res < 0] <- 0
as.integer(round(res))
}
conv.check <-
function(fit, control=NULL, Theta.ok=NULL, tol=sqrt(.Machine$double.eps), ...)
## function(gr, Hess, conv, method, gradTol, relTol,
## tol=sqrt(.Machine$double.eps), ...)
### Compute variance-covariance matrix and check convergence along the
### way.
### fit: clm-object or the result of clm.fit.NR() | gradient, Hessian,
### (control), convergence
### control: (tol), (method), gradTol, relTol
###
### Return: list with elements
### vcov, conv, cond.H, messages and
{
if(missing(control))
control <- fit$control
if(is.null(control))
stop("'control' not supplied - cannot check convergence")
if(!is.null(control$tol))
tol <- control$tol
if(tol < 0)
stop(gettextf("numerical tolerance is %g, expecting non-negative value",
tol), call.=FALSE)
### OPTION: test this.
H <- fit$Hessian
g <- fit$gradient
max.grad <- max(abs(g))
cov <- array(NA_real_, dim=dim(H), dimnames=dimnames(H))
cond.H <- NA_real_
res <- list(vcov=cov, code=integer(0L), cond.H=cond.H,
messages=character(0L))
class(res) <- "conv.check"
if(is.list(code <- fit$convergence))
code <- code[[1L]]
mess <-
switch(as.character(code),
"0" = "Absolute and relative convergence criteria were met",
"1" = "Absolute convergence criterion was met, but relative criterion was not met",
"2" = "iteration limit reached",
"3" = "step factor reduced below minimum",
"4" = "maximum number of consecutive Newton modifications reached")
if(control$method != "Newton") mess <- NULL
### OPTION: get proper convergence message from optim, nlminb, ucminf etc.
res <- c(res, alg.message=mess)
## }
evd <- eigen(H, symmetric=TRUE, only.values=TRUE)$values
negative <- sum(evd < -tol)
if(negative) {
res$code <- -2L
res$messages <-
gettextf(paste("Model failed to converge:",
"degenerate Hessian with %d negative eigenvalues"),
negative)
return(res)
}
## Add condition number to res:
res$cond.H <- max(evd) / min(evd)
## Compute Newton step:
ch <- try(chol(H), silent=TRUE)
if(max.grad > control$gradTol) {
res$code <- -1L
res$messages <-
gettextf("Model failed to converge with max|grad| = %g (tol = %g)",
max.grad, control$gradTol)
## Compute var-cov:
vcov <- try(chol2inv(ch), silent=TRUE)
if(!inherits(vcov, "try-error")) res$vcov[] <- vcov
return(res)
}
if(!is.null(Theta.ok) && !Theta.ok) {
res$code <- -3L
res$messages <-
"not all thresholds are increasing: fit is invalid"
## Compute var-cov:
vcov <- try(chol2inv(ch), silent=TRUE)
if(!inherits(vcov, "try-error")) res$vcov[] <- vcov
return(res)
}
zero <- sum(abs(evd) < tol)
if(zero || inherits(ch, "try-error")) {
res$code <- 1L
res$messages <-
"Hessian is numerically singular: parameters are not uniquely determined"
return(res)
}
### NOTE: Only do the following if 'ch <- try(chol(H), silent=TRUE)'
### actually succedded:
step <- c(backsolve(ch, backsolve(ch, g, transpose=TRUE)))
## Compute var-cov:
res$vcov[] <- chol2inv(ch)
### NOTE: we want res$vcov to be present in all of the situations
### below.
if(max(abs(step)) > control$relTol) {
res$code <- c(res$code, 1L)
corDec <- as.integer(min(cor.dec(step)))
res$messages <-
c(res$messages,
gettextf("some parameters may have only %d correct decimals",
corDec))
}
if(max(evd) * tol > 1) {
res$code <- c(res$code, 2L)
res$messages <-
c(res$messages,
paste("Model is nearly unidentifiable: ",
"very large eigenvalue",
"\n - Rescale variables?", sep=""))
}
if((min(evd) / max(evd)) < tol) {
res$code <- c(res$code, 3L)
if(!5L %in% res$code) {
res$messages <-
c(res$messages,
paste("Model is nearly unidentifiable: ",
"large eigenvalue ratio",
"\n - Rescale variables?", sep=""))
}
}
if(!length(res$code)) {
res$code <- 0L
res$messages <- "successful convergence"
}
res
}
cov.conv <- conv.check
### OPTION: let convergence() print convergence info from clm using
### print.conv.check
print.conv.check <-
function(x, action=c("warn", "silent", "stop", "message"), ...)
{
action <- match.arg(action)
if(x$code == 0L || action == "silent") return(invisible())
Text <- paste("(", x$code[1L], ") ", x$messages[1L], sep="")
if(!is.null(alg.text <- x$alg.message))
Text <- paste(Text, "\nIn addition:", alg.text)
switch(action,
"stop" = stop(Text, call.=FALSE),
"warn" = warning(Text, call.=FALSE),
"message" = message(Text))
}
|