1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163
|
#############################################################################
## Copyright (c) 2010-2022 Rune Haubo Bojesen Christensen
##
## This file is part of the ordinal package for R (*ordinal*)
##
## *ordinal* is free software: you can redistribute it and/or modify
## it under the terms of the GNU General Public License as published by
## the Free Software Foundation, either version 2 of the License, or
## (at your option) any later version.
##
## *ordinal* is distributed in the hope that it will be useful,
## but WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
## GNU General Public License for more details.
##
## A copy of the GNU General Public License is available at
## <https://www.r-project.org/Licenses/> and/or
## <http://www.gnu.org/licenses/>.
#############################################################################
## This file contains:
## Functions for finite difference computations of derivatives
## (gradient and Hessian) of user-specified functions.
deriv12 <- function(fun, x, delta=1e-4, fx=NULL, ...) {
### Compute gradient and Hessian at the same time (to save computing
### time)
nx <- length(x)
fx <- if(!is.null(fx)) fx else fun(x, ...)
stopifnot(length(fx) == 1)
H <- array(NA, dim=c(nx, nx))
g <- numeric(nx)
for(j in 1:nx) {
## Diagonal elements:
xadd <- xsub <- x
xadd[j] <- x[j] + delta
xsub[j] <- x[j] - delta
fadd <- fun(xadd, ...)
fsub <- fun(xsub, ...)
H[j, j] <- (fadd - 2 * fx + fsub) / delta^2
g[j] <- (fadd - fsub) / (2 * delta)
## Off diagonal elements:
for(i in 1:nx) {
if(i >= j) break
## Compute upper triangular elements:
xaa <- xas <- xsa <- xss <- x
xaa[c(i, j)] <- x[c(i, j)] + c(delta, delta)
xas[c(i, j)] <- x[c(i, j)] + c(delta, -delta)
xsa[c(i, j)] <- x[c(i, j)] + c(-delta, delta)
xss[c(i, j)] <- x[c(i, j)] - c(delta, delta)
H[i, j] <- H[j, i] <-
(fun(xaa, ...) - fun(xas, ...) -
fun(xsa, ...) + fun(xss, ...)) /
(4 * delta^2)
}
}
list(gradient = g, Hessian = H)
}
myhess <- function(fun, x, fx=NULL, delta=1e-4, ...) {
nx <- length(x)
fx <- if(!is.null(fx)) fx else fun(x, ...)
stopifnot(length(fx) == 1)
H <- array(NA, dim=c(nx, nx))
for(j in 1:nx) {
## Diagonal elements:
xadd <- xsub <- x
xadd[j] <- x[j] + delta
xsub[j] <- x[j] - delta
H[j, j] <- (fun(xadd, ...) - 2 * fx +
fun(xsub, ...)) / delta^2
## Upper triangular (off diagonal) elements:
for(i in 1:nx) {
if(i >= j) break
xaa <- xas <- xsa <- xss <- x
xaa[c(i, j)] <- x[c(i, j)] + c(delta, delta)
xas[c(i, j)] <- x[c(i, j)] + c(delta, -delta)
xsa[c(i, j)] <- x[c(i, j)] + c(-delta, delta)
xss[c(i, j)] <- x[c(i, j)] - c(delta, delta)
H[j, i] <- H[i, j] <-
(fun(xaa, ...) - fun(xas, ...) -
fun(xsa, ...) + fun(xss, ...)) /
(4 * delta^2)
}
}
H
}
mygrad <-
function(fun, x, delta = 1e-4,
method = c("central", "forward", "backward"), ...)
{
method <- match.arg(method)
nx <- length(x)
if(method %in% c("central", "forward")) {
Xadd <- matrix(rep(x, nx), nrow=nx, byrow=TRUE) + diag(delta, nx)
fadd <- apply(Xadd, 1, fun, ...)
}
if(method %in% c("central", "backward")) {
Xsub <- matrix(rep(x, nx), nrow=nx, byrow=TRUE) - diag(delta, nx)
fsub <- apply(Xsub, 1, fun, ...) ## eval.parent perhaps?
}
res <- switch(method,
"forward" = (fadd - fun(x, ...)) / delta,
"backward" = (fun(x, ...) - fsub) / delta,
"central" = (fadd - fsub) / (2 * delta)
)
res
}
grad.ctr3 <- function(fun, x, delta=1e-4, ...) {
nx <- length(x)
Xadd <- matrix(rep(x, nx), nrow=nx, byrow=TRUE) + diag(delta, nx)
Xsub <- matrix(rep(x, nx), nrow=nx, byrow=TRUE) - diag(delta, nx)
fadd <- apply(Xadd, 1, fun, ...)
fsub <- apply(Xsub, 1, fun, ...) ## eval.parent perhaps?
(fadd - fsub) / (2 * delta)
}
grad.ctr2 <- function(fun, x, delta=1e-4, ...) {
ans <- x
for(i in seq_along(x)) {
xadd <- xsub <- x
xadd[i] <- x[i] + delta
xsub[i] <- x[i] - delta
ans[i] <- (fun(xadd, ...) - fun(xsub, ...)) / (2 * delta)
}
ans
}
grad.ctr <- function(fun, x, delta=1e-4, ...) {
sapply(seq_along(x), function(i) {
xadd <- xsub <- x
xadd[i] <- x[i] + delta
xsub[i] <- x[i] - delta
(fun(xadd, ...) - fun(xsub, ...)) / (2 * delta)
})
}
grad <- grad.ctr
grad.ctr4 <- function(fun, x, delta=1e-4, ...) {
### - checking finiteness of x and fun-values
### - taking care to avoid floating point errors
### - not using h=x*delta rather than h=delta (important for small or
### large x?)
if(!all(is.finite(x)))
stop("Cannot compute gradient: non-finite argument")
ans <- x ## return values
for(i in seq_along(x)) {
xadd <- xsub <- x ## reset fun arguments
xadd[i] <- x[i] + delta
xsub[i] <- x[i] - delta
ans[i] <- (fun(xadd, ...) - fun(xsub, ...)) / (xadd[i] - xsub[i])
### NOTE: xadd[i] - xsub[i] != 2*delta with floating point arithmetic.
}
if(!all(is.finite(ans))) {
warning("cannot compute gradient: non-finite function values occured")
ans[!is.finite(ans)] <- Inf
}
ans
}
|