1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159
|
#############################################################################
## Copyright (c) 2010-2022 Rune Haubo Bojesen Christensen
##
## This file is part of the ordinal package for R (*ordinal*)
##
## *ordinal* is free software: you can redistribute it and/or modify
## it under the terms of the GNU General Public License as published by
## the Free Software Foundation, either version 2 of the License, or
## (at your option) any later version.
##
## *ordinal* is distributed in the hope that it will be useful,
## but WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
## GNU General Public License for more details.
##
## A copy of the GNU General Public License is available at
## <https://www.r-project.org/Licenses/> and/or
## <http://www.gnu.org/licenses/>.
#############################################################################
## This file contains:
## Functions that can drop columns from rank-deficient design
## matrices. One is exported and others used internally.
drop.coef <- function(X, silent = FALSE)
### works if ncol(X) >= 0 and nrow(X) >= 0
{
## test and match arguments:
stopifnot(is.matrix(X))
silent <- as.logical(silent)[1]
## perform the qr-decomposition of X using LINPACK methods:
qr.X <- qr(X, tol = 1e-7, LAPACK = FALSE)
if(qr.X$rank == ncol(X))
return(X) ## return X if X has full column rank
if(!silent) ## message the no. dropped columns:
message(gettextf("design is column rank deficient so dropping %d coef",
ncol(X) - qr.X$rank))
## return the columns correponding to the first qr.x$rank pivot
## elements of X:
newX <- X[, qr.X$pivot[1:qr.X$rank], drop = FALSE]
## did we succeed? stop-if-not:
if(qr.X$rank != qr(newX)$rank)
stop(gettextf("determination of full column rank design matrix failed"),
call. = FALSE)
return(newX)
}
drop.coef2 <- function(X, tol = 1e-7, silent = FALSE, test.ans = FALSE)
### works if ncol(X) >= 0 and nrow(X) >= 0
{
## test and match arguments:
stopifnot(is.matrix(X))
silent <- as.logical(silent)[1]
aliased <- rep.int(0, ncol(X))
## perform the qr-decomposition of X using LINPACK methods:
qr.X <- qr(X, tol = tol, LAPACK = FALSE)
if(qr.X$rank == ncol(X)) {
## return X if X has full column rank
attr(X, "aliased") <- aliased
attr(X, "orig.colnames") <- colnames(X)
return(X)
}
if(!silent) ## message the no. dropped columns:
message(gettextf("design is column rank deficient so dropping %d coef",
ncol(X) - qr.X$rank))
## return the columns correponding to the first qr.x$rank pivot
## elements of X:
newX <- X[, qr.X$pivot[1:qr.X$rank], drop = FALSE]
sel <- qr.X$pivot[-(1:qr.X$rank)]
aliased[sel] <- 1
attr(newX, "aliased") <- aliased
attr(newX, "orig.colnames") <- colnames(X)
## Copy old attributes:
attributes(newX)$contrasts <- attributes(X)$contrasts
attr(newX, "assign") <- attr(X, "assign")[-sel]
## did we succeed? stop-if-not:
if(test.ans && qr.X$rank != qr(newX)$rank)
stop(gettextf("determination of full column rank design matrix failed"),
call. = FALSE)
return(newX)
}
drop.cols <- function(mf, silent = FALSE, drop.scale=TRUE)
### drop columns from X and possibly NOM and S to ensure full column
### rank.
### mf - list with X and possibly NOM and S design matrices. Includes
### alpha.names
###
### returns: updated version of mf.
{
nalpha <- length(mf$alpha.names)
## X is assumed to contain an intercept at this point:
Xint <- match("(Intercept)", colnames(mf$X), nomatch = 0)
if(Xint <= 0) {
mf$X <- cbind("(Intercept)" = rep(1, nrow(mf$X)), mf$X)
warning("an intercept is needed and assumed")
} ## intercept in X is guaranteed.
if(!is.null(mf[["NOM"]])){
## store coef names:
mf$coef.names <- list()
mf$coef.names$alpha <-
paste(rep(mf$alpha.names, ncol(mf$NOM)), ".",
rep(colnames(mf$NOM), each=nalpha), sep="")
mf$coef.names$beta <- colnames(mf$X)[-1]
## drop columns from NOM:
mf$NOM <- drop.coef2(mf$NOM, silent=silent)
## drop columns from X:
NOMX <- drop.coef2(cbind(mf$NOM, mf$X[,-1, drop=FALSE]),
silent=silent)
## extract and store X:
mf$X <- cbind("(Intercept)" = rep(1, nrow(mf$X)),
NOMX[,-seq_len(ncol(mf$NOM)), drop=FALSE])
## store alias information:
mf$aliased <- list(alpha = rep(attr(mf$NOM, "aliased"),
each=nalpha))
mf$aliased$beta <- attr(NOMX, "aliased")[-seq_len(ncol(mf$NOM))]
if(drop.scale && !is.null(mf[["S"]])) {
mf$coef.names$zeta <- colnames(mf$S)[-1]
## drop columns from S:
NOMS <- drop.coef2(cbind(mf$NOM, mf$S[,-1, drop=FALSE]),
silent=silent)
## extract and store S:
mf$S <- cbind("(Intercept)" = rep(1, nrow(mf$S)),
NOMS[,-seq_len(ncol(mf$NOM)), drop=FALSE])
mf$aliased$zeta <- attr(NOMS,
"aliased")[-seq_len(ncol(mf$NOM))]
} else if(!is.null(mf[["S"]])) {
Sint <- match("(Intercept)", colnames(mf$S), nomatch = 0)
if(Sint <= 0) {
mf$S <- cbind("(Intercept)" = rep(1, nrow(mf$S)), mf$S)
warning("an intercept is needed and assumed in 'scale'",
call.=FALSE)
} ## intercept in S is guaranteed.
mf$coef.names$zeta <- colnames(mf$S)[-1]
mf$S <- drop.coef2(mf$S, silent=silent)
mf$aliased$zeta <- attr(mf$S, "aliased")[-1]
}
return(mf)
} ## end !is.null(mf[["NOM"]])
## drop columns from X assuming an intercept:
mf$coef.names <- list(alpha = mf$alpha.names,
beta = colnames(mf$X)[-1])
mf$X <- drop.coef2(mf$X, silent=silent)
mf$aliased <- list(alpha = rep(0, nalpha),
beta = attr(mf$X, "aliased")[-1])
## drop columns from S if relevant:
if(!is.null(mf[["S"]])) {
Sint <- match("(Intercept)", colnames(mf$S), nomatch = 0)
if(Sint <= 0) {
mf$S <- cbind("(Intercept)" = rep(1, nrow(mf$S)), mf$S)
warning("an intercept is needed and assumed in 'scale'",
call.=FALSE)
} ## intercept in S is guaranteed.
mf$coef.names$zeta <- colnames(mf$S)[-1]
mf$S <- drop.coef2(mf$S, silent=silent)
mf$aliased$zeta <- attr(mf$S, "aliased")[-1]
}
return(mf)
}
|