1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70
|
\name{clm.control}
\alias{clm.control}
%- Also NEED an '\alias' for EACH other topic documented here.
\title{Set control parameters for cumulative link models}
\description{
Set control parameters for cumulative link models
}
\usage{
clm.control(method = c("Newton", "model.frame", "design", "ucminf", "nlminb",
"optim"),
sign.location = c("negative", "positive"),
sign.nominal = c("positive", "negative"),
..., trace = 0L,
maxIter = 100L, gradTol = 1e-06, maxLineIter = 15L, relTol = 1e-6,
tol = sqrt(.Machine$double.eps), maxModIter = 5L,
convergence = c("warn", "silent", "stop", "message"))
}
%- maybe also 'usage' for other objects documented here.
\arguments{
\item{method}{\code{"Newton"} fits the model by maximum likelihood and
\code{"model.frame"} cause \code{\link{clm}} to return the
\code{model.frame}, \code{"design"} causes \code{\link{clm}} to
return a list of design matrices etc. that can be used with
\code{\link{clm.fit}}. \code{ucminf}, \code{nlminb} and \code{optim} refer
to general purpose optimizers.
}
\item{sign.location}{change sign of the location part of the model.
}
\item{sign.nominal}{change sign of the nominal part of the model.
}
\item{trace}{numerical, if \code{> 0} information is printed about and during
the optimization process. Defaults to \code{0}.
}
\item{maxIter}{the maximum number of Newton-Raphson iterations.
Defaults to \code{100}.
}
\item{gradTol}{the maximum absolute gradient; defaults to \code{1e-6}.
}
\item{maxLineIter}{the maximum number of step halfings allowed if
a Newton(-Raphson) step over shoots. Defaults to \code{15}.
}
\item{relTol}{relative convergence tolerence: relative change in the
parameter estimates between Newton iterations. Defaults to \code{1e-6}.
}
\item{tol}{numerical tolerence on eigenvalues to determine
negative-definiteness of Hessian. If the Hessian of a model fit is
negative definite, the fitting algorithm did not converge. If the
Hessian is singular, the fitting algorithm did converge albeit not
to a \emph{unique} optimum, so one or more parameters are not
uniquely determined even though the log-likelihood value is.
}
\item{maxModIter}{the maximum allowable number of consecutive
iterations where the Newton step needs to be modified to be a decent
direction. Defaults to \code{5}.
}
\item{convergence}{action to take if the fitting algorithm did not
converge.
}
\item{\dots}{control arguments parsed on to \code{\link{ucminf}},
\code{\link{nlminb}} or \code{\link{optim}}.
}
}
\value{
a list of control parameters.
}
\author{Rune Haubo B Christensen}
\seealso{
\code{\link{clm}}
}
\keyword{models}
|