1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176
|
library(ordinal)
#################################
## 1 categorical variable in nominal:
fm <- clm(rating ~ temp, nominal=~contact, data=wine)
fm$Theta
fm$alpha.mat
## Threshold effects:
fm <- clm(rating ~ temp, nominal=~contact, data=wine,
threshold="symmetric")
fm$Theta
fm$alpha.mat
fm <- clm(rating ~ temp, nominal=~contact, data=wine,
threshold="equidistant")
fm$Theta
fm$alpha.mat
## Singular fit is still ok (with a warning, though)
fm <- clm(rating ~ contact, nominal=~temp, data=wine)
fm$alpha.mat
fm$Theta
#################################
## 1 continuous variable:
set.seed(123)
x <- rnorm(nrow(wine), sd=1)
fm <- clm(rating ~ temp, nominal=~ x, data=wine)
fm$alpha.mat
fm$Theta
fm <- clm(rating ~ temp, nominal=~ poly(x, 2), data=wine)
fm$alpha.mat
fm$Theta
#################################
## 1 categorical + 1 continuous variable:
set.seed(123)
x <- rnorm(nrow(wine), sd=1)
fm <- clm(rating ~ temp, nominal=~contact + x, data=wine)
fm$alpha.mat
fm$Theta
fm <- clm(rating ~ temp, nominal=~contact + x, data=wine,
threshold="symmetric")
fm$alpha.mat
fm$Theta
#################################
### NOTE: To get the by-threshold nominal effects of continuous terms
## use:
with(fm, t(apply(alpha.mat, 1, function(th) tJac %*% th)))
#################################
## Interactions:
fm <- clm(rating ~ temp, nominal=~contact:x, data=wine)
fm$alpha.mat
fm$Theta
fm <- clm(rating ~ temp, nominal=~contact+x+contact:x, data=wine)
fm$alpha.mat
fm$Theta
fm <- clm(rating ~ temp, nominal=~contact*x, data=wine)
fm$alpha.mat
fm$Theta
## polynomial terms:
fm <- clm(rating ~ temp, nominal=~contact + poly(x, 2), data=wine)
fm$alpha.mat
fm$Theta
## logical variables: (treated like numeric variables)
wine$Con <- as.character(wine$contact) == "yes"
fm <- clm(rating ~ temp, nominal=~Con, data=wine)
fm$Theta
fm$alpha.mat
wine$Con.num <- 1 * wine$Con
fm <- clm(rating ~ temp, nominal=~Con.num, data=wine)
fm$Theta
fm$alpha.mat
#################################
## Two continuous variables:
set.seed(321)
y <- rnorm(nrow(wine), sd=1)
fm1 <- clm(rating ~ temp, nominal=~y + x, data=wine)
fm1$alpha.mat
fm1$Theta
## summary(fm1)
#################################
## 1 categorical + 2 continuous variables:
fm1 <- clm(rating ~ temp, nominal=~y + contact + x, data=wine)
fm1$alpha.mat
fm1$Theta
fm1 <- clm(rating ~ temp, nominal=~contact + x + contact:x + y,
data=wine)
summary(fm1)
fm1$Theta
fm1$alpha.mat
fm1 <- clm(rating ~ temp, nominal=~contact*x + y, data=wine)
fm1$Theta
fm1$alpha.mat
t(fm1$alpha.mat)
fm1
#################################
## ordered factors (behaves like numerical variables):
data(soup, package="ordinal")
fm2 <- clm(SURENESS ~ 1, nominal=~PRODID + DAY, data=soup)
fm2$Theta
fm2$alpha.mat
prodid <- factor(soup$PRODID, ordered=TRUE)
fm2 <- clm(SURENESS ~ 1, nominal=~prodid + DAY, data=soup)
fm2$alpha.mat
fm2$Theta
fm2 <- clm(SURENESS ~ 1, nominal=~prodid, data=soup)
fm2$alpha.mat
fm2$Theta
#################################
## Aliased Coefficients:
##
## Example where the interaction in the nominal effects is aliased (by
## design). Here the two Theta matrices coincide. The alpha.mat
## matrices are similar except one has an extra row with NAs:
soup2 <- soup
levels(soup2$DAY)
levels(soup2$GENDER)
xx <- with(soup2, DAY == "2" & GENDER == "Female")
## Model with additive nominal effects:
fm8 <- clm(SURENESS ~ PRODID, nominal= ~ DAY + GENDER, data=soup2, subset=!xx)
fm8$alpha.mat
fm8$Theta
## Model with non-additive, but aliased nominal effects:
fm9 <- clm(SURENESS ~ PRODID, nominal= ~ DAY * GENDER, data=soup2, subset=!xx)
fm9$alpha.mat
fm9$Theta
stopEqual <- function(x, y, ca=FALSE)
stopifnot(isTRUE(all.equal(x, y, check.attributes=ca)))
stopEqual(fm8$alpha.mat, fm9$alpha.mat[1:3, ])
stopEqual(fm8$Theta, fm9$Theta)
stopEqual(logLik(fm8), logLik(fm9))
#################################
## Weights:
set.seed(12345)
wts <- runif(nrow(soup))
fm2 <- clm(SURENESS ~ 1, nominal=~SOUPTYPE + DAY, data=soup, weights=wts)
fm2$Theta
## Offset (correctly gives and error)
fm2 <- try(clm(SURENESS ~ 1, nominal=~SOUPTYPE + DAY + offset(wts),
data=soup), silent=TRUE)
stopifnot(inherits(fm2, "try-error"))
#################################
### Other (misc) examples:
fm2 <- clm(SURENESS ~ 1, nominal=~SOUPTYPE + DAY, data=soup)
fm2$Theta
fm2
fm2 <- clm(SURENESS ~ 1, nominal=~SOUPTYPE * DAY, data=soup)
fm2$Theta
fm2
fm2$alpha.mat
fm2 <- clm(SURENESS ~ 1, nominal=~SOUPTYPE * DAY, data=soup,
threshold="symmetric")
fm2$Theta
fm2$alpha.mat
#################################
### Check correctness of Theta matrix when intercept is removed in
### nominal formula:
### December 25th 2014, RHBC
fm1 <- clm(rating ~ temp, nominal=~contact-1, data=wine)
fm2 <- clm(rating ~ temp, nominal=~contact, data=wine)
stopifnot(isTRUE(all.equal(fm1$Theta, fm2$Theta)))
stopifnot(isTRUE(all.equal(fm1$logLik, fm2$logLik)))
wine2 <- wine
wine2$contact <- relevel(wine2$contact, "yes")
fm3 <- clm(rating ~ temp, nominal=~contact, data=wine2)
stopifnot(isTRUE(all.equal(coef(fm1, na.rm=TRUE), coef(fm3))))
#################################
|