1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170
|
library(ordinal)
## source("test.clm.predict.R")
## library(devtools)
## r2path <- "/Users/rhbc/Documents/Rpackages/ordinal/pkg/ordinal"
## clean_dll(pkg = r2path)
## load_all(r2path)
cy <- with(wine, which(temp == "cold" & contact == "yes"))
options("contrasts" = c("contr.treatment", "contr.poly"))
getOption("contrasts")
## Example model
wine1.clm <- clm(rating ~ temp*contact, subset = -cy, data = wine)
summary(wine1.clm)
names(wine1.clm)
wine.clm <- clm(rating~temp*contact, data=wine)
summary(wine.clm)
names(wine.clm)
## Make sure the same elements are present with a rank deficient model
## fit:
stopifnot(all(names(wine1.clm) == names(wine.clm)))
## With treatment contrasts:
options("contrasts" = c("contr.treatment", "contr.poly"))
wine.clm <- clm(rating~temp*contact, data=wine)
coef(summary(wine.clm))
head(model.matrix(wine.clm)$X)
wine.clm$contrasts
head(pred1 <- predict(wine.clm)$fit)
## With sum contrasts:
options("contrasts" = c("contr.sum", "contr.poly"))
wine.clm <- clm(rating~temp*contact, data=wine)
coef(summary(wine.clm))
head(model.matrix(wine.clm)$X)
wine.clm$contrasts
head(pred2 <- predict(wine.clm)$fit)
## Mixture of sum and treatment contrasts:
options("contrasts" = c("contr.treatment", "contr.poly"))
wine.clm <- clm(rating~temp*contact, data=wine,
contrasts=list(temp="contr.sum"))
coef(summary(wine.clm))
head(model.matrix(wine.clm)$X)
wine.clm$contrasts
head(pred3 <- predict(wine.clm)$fit)
stopifnot(isTRUE(all.equal(pred1, pred2)))
stopifnot(isTRUE(all.equal(pred1, pred3)))
#################################
### Now for a rank deficient fit:
#################################
cy <- with(wine, which(temp == "cold" & contact == "yes"))
options("contrasts" = c("contr.treatment", "contr.poly"))
wine1.clm <- clm(rating ~ temp*contact, subset = -cy, data = wine)
coef(summary(wine1.clm))
attributes(model.matrix(wine1.clm)$X)$contrasts
wine1.clm$contrasts
head(pred4 <- predict(wine1.clm)$fit)
options("contrasts" = c("contr.sum", "contr.poly"))
wine1.clm <- clm(rating ~ temp*contact, subset = -cy, data = wine)
attributes(model.matrix(wine1.clm)$X)$contrasts
options("contrasts" = c("contr.treatment", "contr.poly"))
attributes(model.matrix(wine1.clm)$X)$contrasts
## Notice that the contrasts change in the attributes of the fit!!!
coef(summary(wine1.clm))
wine1.clm$contrasts
head(pred5 <- predict(wine1.clm)$fit)
head(cbind(pred4, pred5))
stopifnot(isTRUE(all.equal(pred4, pred5)))
options("contrasts" = c("contr.treatment", "contr.poly"))
wine1.clm <- clm(rating ~ temp*contact, subset = -cy, data = wine,
contrasts=list(temp="contr.sum"))
coef(summary(wine1.clm))
head(model.matrix(wine1.clm)$X)
attributes(model.matrix(wine1.clm)$X)$contrasts
wine1.clm$contrasts
head(pred6 <- predict(wine1.clm)$fit)
head(cbind(pred4, pred5, pred6))
stopifnot(isTRUE(all.equal(pred4, pred6)))
##################################################################
## Compare equality of fitted values for models with different contrasts:
options("contrasts" = c("contr.treatment", "contr.poly"))
fm1 <- clm(rating ~ temp + contact, data=wine)
fitted(fm1)
options("contrasts" = c("contr.sum", "contr.poly"))
fm2 <- clm(rating ~ temp + contact, data=wine)
fitted(fm2)
options("contrasts" = c("contr.treatment", "contr.poly"))
fm3 <- clm(rating ~ temp + contact, data=wine,
contrasts=list(contact="contr.sum"))
fitted(fm3)
stopifnot(isTRUE(all.equal(fitted(fm1), fitted(fm2))))
stopifnot(isTRUE(all.equal(fitted(fm1), fitted(fm3))))
##################################################################
## Compare equality of fitted values for models with different
## contrasts in face of aliased coefficients:
options("contrasts" = c("contr.treatment", "contr.poly"))
cy <- with(wine, which(temp == "cold" & contact == "yes"))
Wine <- subset(wine, subset=!(temp == "cold" & contact == "yes"))
fm1 <- clm(rating ~ temp + contact, data=Wine)
options("contrasts" = c("contr.sum", "contr.poly"))
fm2 <- clm(rating ~ temp + contact, data=Wine)
options("contrasts" = c("contr.treatment", "contr.poly"))
fm3 <- clm(rating ~ temp + contact, data=Wine,
contrasts=list(contact="contr.sum"))
stopifnot(isTRUE(all.equal(fitted(fm1), fitted(fm2))))
stopifnot(isTRUE(all.equal(fitted(fm1), fitted(fm3))))
stopifnot(isTRUE(all.equal(predict(fm1)$fit, predict(fm2)$fit)))
stopifnot(isTRUE(all.equal(predict(fm1)$fit, predict(fm3)$fit)))
#################################
## Does this also happen if the wine data has changed?
options("contrasts" = c("contr.treatment", "contr.poly"))
Wine <- subset(wine, subset=!(temp == "cold" & contact == "yes"))
fm1 <- clm(rating ~ temp + contact, data=Wine)
fit1 <- fitted(fm1)
pred1 <- predict(fm1)$fit
Wine <- wine
pred2 <- predict(fm1)$fit
stopifnot(isTRUE(all.equal(fit1, pred1)))
stopifnot(isTRUE(all.equal(fit1, pred2)))
## What if weights, say, is an expression?
## Notice that updating the model object changes it:
set.seed(123)
fm1 <- clm(rating ~ temp + contact, data=wine,
weights=runif(nrow(wine), .5, 1.5))
fm2 <- update(fm1)
stopifnot(isTRUE(all.equal(fitted(fm1), predict(fm1)$fit)))
stopifnot(!isTRUE(all.equal(fitted(fm1), fitted(fm2))))
#################################
## Test equality of fits and predictions of models with:
## 'x + I(x^2)' and 'poly(x, 2)':
## December 25th 2014, RHBC.
data(wine)
set.seed(1)
x <- rnorm(nrow(wine), sd=2) + as.numeric(wine$rating)
range(x)
## Comparison of 'x + I(x^2)' and 'poly(x, 2)':
fm3 <- clm(rating ~ temp + x + I(x^2), data=wine)
fm4 <- clm(rating ~ temp + poly(x, 2), data=wine)
## Same model fits, but different parameterizations:
stopifnot(
!isTRUE(all.equal(coef(fm3), coef(fm4), check.names=FALSE))
)
stopifnot(isTRUE(all.equal(logLik(fm3), logLik(fm4))))
newData <- expand.grid(temp = levels(wine$temp),
x=seq(-1, 7, 3))
predict(fm3, newdata=newData)$fit
predict(fm4, newdata=newData)$fit
stopifnot(isTRUE(all.equal(fitted(fm3), fitted(fm4))))
stopifnot(isTRUE(
all.equal(predict(fm3, newdata=newData)$fit,
predict(fm4, newdata=newData)$fit)))
#################################
|