File: testCLM.R

package info (click to toggle)
r-cran-ordinal 2022.11-16-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 1,856 kB
  • sloc: ansic: 979; sh: 13; makefile: 5
file content (237 lines) | stat: -rw-r--r-- 8,328 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
library(ordinal)
options(contrasts = c("contr.treatment", "contr.poly"))
## library(devtools)
## r2path <- "/Users/rhbc/Documents/Rpackages/ordinal/pkg/ordinal"
## clean_dll(pkg = r2path)
## load_all(r2path)

## More manageable data set:
data(soup, package="ordinal")
(tab26 <- with(soup, table("Product" = PROD, "Response" = SURENESS)))
dimnames(tab26)[[2]] <- c("Sure", "Not Sure", "Guess", "Guess", "Not Sure", "Sure")
dat26 <- expand.grid(sureness = as.factor(1:6), prod = c("Ref", "Test"))
dat26$wghts <- c(t(tab26))
m1 <- clm(sureness ~ prod, scale = ~prod, data = dat26,
          weights = wghts, link = "logit")
## print, summary, vcov, logLik, AIC:
m1
summary(m1)
vcov(m1)

logLik(m1)
ll.m1 <- structure(-2687.74456343981, df = 7L, nobs = 1847,
                   class = "logLik")
stopifnot(all.equal(logLik(m1), ll.m1))

AIC(m1)

coef(m1)
cm1 <- c(-1.49125702755587, -0.45218462707814, -0.107208315524318, 0.163365282774162,
         0.88291347877514, 1.29587762626394, 0.147986162902775)
stopifnot(all.equal(as.vector(coef(m1)), cm1))

coef(summary(m1))
csm1 <- structure(c(-1.49125702755587, -0.45218462707814, -0.107208315524318,
0.163365282774162, 0.88291347877514, 1.29587762626394, 0.147986162902775,
0.0921506468161812, 0.0718240681909781, 0.069954084652323, 0.0702546879687391,
0.0795708692869622, 0.119032405993894, 0.065104213008022, -16.1828167145758,
-6.2957256316336, -1.53255261729392, 2.32532927691394, 11.0959385851501,
10.8867632762999, 2.27306584421104, 6.66732036748908e-59, 3.05965144996025e-10,
0.125386123756898, 0.0200543599621069, 1.31274723412040e-28,
1.33293711602276e-27, 0.0230222123418036), .Dim = c(7L, 4L), .Dimnames = list(
    c("1|2", "2|3", "3|4", "4|5", "5|6", "prodTest", "prodTest"
    ), c("Estimate", "Std. Error", "z value", "Pr(>|z|)")))
stopifnot(all.equal(coef(summary(m1)), csm1))

## link functions:
m2 <- update(m1, link = "probit")
m3 <- update(m1, link = "cloglog")

m4 <- update(m1, link = "loglog")
m5 <- update(m1, link = "cauchit", start = coef(m1))
## m6 <- update(m1, link = "Aranda-Ordaz", lambda = 1)
## m7 <- update(m1, link = "Aranda-Ordaz")
## m8 <- update(m1, link = "log-gamma", lambda = 1)
## m9 <- update(m1, link = "log-gamma")
## nominal effects:
mN1 <- clm(sureness ~ 1, nominal = ~ prod, data = dat26,
           weights = wghts)
anova(m1, mN1)
## optimizer / method:
update(m1, scale = ~ 1, method = "Newton")
update(m1, scale = ~ 1, method = "ucminf")
update(m1, scale = ~ 1, method = "nlminb")
update(m1, scale = ~ 1, method = "optim")
update(m1, scale = ~ 1, method = "model.frame")
update(m1, ~.-prod, scale = ~ 1,
       nominal = ~ prod, method = "model.frame")
## threshold functions
mT1 <- update(m1, threshold = "symmetric")
mT2 <- update(m1, threshold = "equidistant")
anova(m1, mT1, mT2)

## Extend example from polr in package MASS:
## Fit model from polr example:
if(require(MASS)) {
    fm1 <- clm(Sat ~ Infl + Type + Cont, weights = Freq, data = housing)
    fm1
    summary(fm1)
    ## With probit link:
    summary(update(fm1, link = "probit"))
    ## Allow scale to depend on Cont-variable
    summary(fm2 <- update(fm1, scale =~ Cont))
    summary(fm3 <- update(fm1, location =~.-Cont, nominal =~ Cont))
    summary(fm4 <- update(fm2, location =~.-Cont, nominal =~ Cont))
    anova(fm1, fm2, fm3, fm4)
    ## which seems to improve the fit
}

#################################
## Better handling of ill-defined variance-covariance matrix of the
## parameters in summary methods for clm and clmm objects:
dat26.2 <- data.frame(sureness = as.factor(1:12),
                      prod = rep(c("One", "Two", "Three"),each=4))
fm1 <- clm(sureness ~ prod, ~prod, data = dat26.2)
fm1
summary(fm1)
summary(fm1, corr = 1)
## fm1$Hessian
## sl1 <- slice(fm1, 13)
## fitted(fm1)
## convergence(fm1)
## eigen(fm1$Hessian)$values
## sqrt(diag(solve(fm1$Hessian)))
## sqrt(diag(ginv(fm1$Hessian)))

#################################
## Missing values:
## Bug-report from Jonathan Williams
## <Jonathan.Williams@dpag.ox.ac.uk>, 18 March 2010 12:42
data(soup, package = "ordinal")
soup$SURENESS[10] <- NA
c1a <- clm(ordered(SURENESS)~PROD, data=soup); summary(c1a)
c2a <- clm(ordered(SURENESS)~PROD, scale = ~PROD, data=soup)
summary(c2a)
c3a <- clm(ordered(SURENESS)~1, scale = ~PROD, data=soup)
summary(c3a)
data(soup, package = "ordinal")
soup$PROD[1] <- NA
c1a <- clm(ordered(SURENESS)~PROD, data=soup)
summary(c1a)
c2a <- clm(ordered(SURENESS)~PROD, scale = ~PROD, data=soup)
summary(c2a)
c3a <- clm(ordered(SURENESS)~1, scale = ~PROD, data=soup)
summary(c3a)
soup$SURENESS[10] <- NA
c1a <- clm(ordered(SURENESS)~PROD, data=soup)
summary(c1a)
c2a <- clm(ordered(SURENESS)~PROD, scale = ~PROD, data=soup)
summary(c2a)
c3a <- clm(ordered(SURENESS)~1, scale = ~PROD, data=soup)
summary(c3a)

## na.actions:
c4a <- clm(ordered(SURENESS)~PROD, scale = ~PROD, data=soup,
           na.action=na.omit)
summary(c4a)

tC1 <- try(clm(ordered(SURENESS)~PROD, scale = ~PROD, data=soup,
               na.action=na.fail), silent = TRUE)
stopifnot(inherits(tC1, "try-error"))

c4a <- clm(ordered(SURENESS)~PROD, scale = ~PROD, data=soup,
           na.action=na.exclude)
summary(c4a)

tC2 <- try(clm(ordered(SURENESS)~PROD, scale = ~PROD, data=soup,
                na.action=na.pass), silent = TRUE)
stopifnot(inherits(tC2, "try-error"))

## Subset:
data(soup, package="ordinal")
c4a <- clm(ordered(SURENESS)~PROD, scale = ~PROD, data=soup,
           subset = 1:100)
c4a <- clm(ordered(SURENESS)~1, scale = ~PROD, data=soup,
           subset = 1:100)
c4a <- clm(ordered(SURENESS)~PROD, data=soup,
           subset = 1:100)
c4a <- clm(ordered(SURENESS)~1, data=soup,
           subset = 1:100)

## Offset:
data(soup, package = "ordinal")
set.seed(290980)
offs <- runif(nrow(soup))
c4a <- clm(ordered(SURENESS)~PROD + offset(offs),
           scale = ~PROD, data=soup, subset = 1:100)
summary(c4a)

c4a <- clm(ordered(SURENESS)~PROD + offset(offs),
           scale = ~PROD + offset(offs), data=soup, subset = 1:100)
summary(c4a)

off2 <- offs
c4a <- clm(ordered(SURENESS)~PROD + offset(offs),
           scale = ~PROD + offset(off2), data=soup, subset = 1:100)
summary(c4a)

c4a <- clm(ordered(SURENESS)~PROD,
           scale = ~PROD + offset(offs), data=soup, subset = 1:100)
summary(c4a)

## data as matrix:
dat26M <- as.matrix(dat26)
m1 <- clm(sureness ~ prod, scale = ~prod, data = dat26,
          weights = wghts, link = "logit")
summary(m1)

## data in enclosing environment:
attach(soup)
m1 <- clm(SURENESS ~ PROD, scale = ~PROD)
summary(m1)
detach(soup)

##################################################################
### Parameter estimates were not correct with large scale effects due
### to end cut-points being \pm 100. This is not enough for
### location-scale model, but seems to be for location only models.
### Bug report from Ioannis Kosmidis <ioannis@stats.ucl.ac.uk>:

### A 2x3 contigency table that will give a large estimated value of
### zeta
x <- rep(0:1, each = 3)
response <- factor(rep(c(1, 2, 3), times = 2))
freq <- c(1, 11, 1, 13, 1, 14)
totals <- rep(tapply(freq, x, sum), each = 3)
Dat <- data.frame(response, x, freq)

### Fitting a cumulative link model with dispersion effects
modClm <- clm(response ~ x, scale = ~ x, weights = freq, data = Dat,
             control = clm.control(grtol = 1e-10, convTol = 1e-10))
summary(modClm)
### The maximized log-likelihood for this saturated model should be
sum(freq*log(freq/totals))
# > sum(freq*log(freq/totals))
# [1] -29.97808
### but apparently clm fails to maximixe the log-likelihood
modClm$logLik
# > modClm$logLik
# [1] -30.44452
stopifnot(isTRUE(all.equal(sum(freq*log(freq/totals)), modClm$logLik)))

### The estimates reported by clm are
coef(modClm)
coef.res <- structure(c(-2.48490664104217, 2.48490665578163,
                        2.48490659188594,
                        3.54758796387530), .Names = c("1|2", "2|3",
                                             "x", "x"))
stopifnot(isTRUE(all.equal(coef.res, coef(modClm))))
# > modClm$coefficients
#      1|2       2|3         x         x
# -2.297718  2.297038  1.239023  2.834285
### while they should be (from my own software)
#      1|2       2|3         x    disp.x
#-2.484907  2.484907  2.484907  3.547588
convergence(modClm)

##################################################################