1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176
|
#############################################################################
## Copyright (c) 2010-2022 Rune Haubo Bojesen Christensen
##
## This file is part of the ordinal package for R (*ordinal*)
##
## *ordinal* is free software: you can redistribute it and/or modify
## it under the terms of the GNU General Public License as published by
## the Free Software Foundation, either version 2 of the License, or
## (at your option) any later version.
##
## *ordinal* is distributed in the hope that it will be useful,
## but WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
## GNU General Public License for more details.
##
## A copy of the GNU General Public License is available at
## <https://www.r-project.org/Licenses/> and/or
## <http://www.gnu.org/licenses/>.
#############################################################################
## This file contains:
## The function clm.fit() - an lm.fit or glm.fit equivalent for CLMs.
clm.fit <- function(y, ...) {
UseMethod("clm.fit")
}
clm.fit.factor <-
function(y, X, S, N, weights = rep(1, nrow(X)),
offset = rep(0, nrow(X)), S.offset = rep(0, nrow(X)),
control = list(), start, doFit=TRUE,
link = c("logit", "probit", "cloglog", "loglog", "cauchit",
"Aranda-Ordaz", "log-gamma"),
threshold = c("flexible", "symmetric", "symmetric2", "equidistant"),
...)
### This function basically does the same as clm, but without setting
### up the model matrices from formulae, and with minimal post
### processing after parameter estimation.
{
## Initial argument matching and testing:
threshold <- match.arg(threshold)
link <- match.arg(link)
control <- do.call(clm.control, control)
if(missing(y)) stop("please specify y")
if(missing(X)) X <- cbind("(Intercept)" = rep(1, length(y)))
stopifnot(is.factor(y), is.matrix(X))
if(missing(weights) || is.null(weights))
weights <- rep(1, length(y))
if(missing(offset) || is.null(offset))
offset <- rep(0, length(y))
if(missing(S.offset) || is.null(S.offset))
S.offset <- rep(0, length(y))
stopifnot(length(y) == nrow(X) &&
length(y) == length(weights) &&
length(y) == length(offset) &&
length(y) == length(S.offset))
frames <- list(y=y, X=X)
y[weights <= 0] <- NA
y.levels <- levels(droplevels(y))
struct <- namedList(y, X, weights, offset, S.offset, y.levels,
threshold, link, control, doFit)
## S and N are optional:
if(!missing(S) && !is.null(S)) {
struct$S <- S
stopifnot(is.matrix(S),
length(y) == nrow(S))
}
if(!missing(N) && !is.null(N)) {
struct$NOM <- N
stopifnot(is.matrix(N),
length(y) == nrow(N))
}
clm.fit.default(struct)
}
clm.fit.default <- function(y, ...)
### y: design object with the following components: ...
### (tJac=NULL), (y.levels=NULL), threshold, (aliased=NULL),
### (start=NULL), link, control, weights, (coef.names=NULL), y, X,
### (S=NULL), (NOM=NULL), doFit=TRUE, S.offset=NULL
{
## check args:
stopifnot(is.list(y))
y <- c(y, list(...))
stopifnot(all(
c("y", "X", "offset", "weights", "link", "threshold",
"control", "doFit") %in% names(y) ))
## preprocess design objects if needed:
if(is.null(y$y.levels)) y$y.levels <- levels(y$y)
if(is.null(y$tJac)) {
y <- c(y, makeThresholds(y$y.levels, y$threshold))
}
if(is.null(y$aliased))
y <- drop.cols(y, silent=TRUE, drop.scale=FALSE)
## Make model environment:
rho <- do.call(clm.newRho, y)
setLinks(rho, y$link)
start <- set.start(rho, start=y$start, get.start=is.null(y$start),
threshold=y$threshold, link=y$link,
frames=y)
rho$par <- as.vector(start) ## remove attributes
if(y$doFit == FALSE) return(rho)
if(length(rho$lambda) > 0 && y$control$method != "nlminb") {
message("Changing to 'nlminb' optimizer for flexible link function")
y$control$method <- "nlminb"
}
## Fit the model:
fit <- if(length(rho$lambda) > 0) {
clm_fit_flex(rho, control=y$control$ctrl)
} else if(y$control$method == "Newton") {
clm_fit_NR(rho, y$control)
} else {
clm_fit_optim(rho, y$control$method, y$control$ctrl)
}
## Adjust iteration count:
if(y$control$method == "Newton" &&
!is.null(start.iter <- attr(start, "start.iter")))
fit$niter <- fit$niter + start.iter
## Update coefficients, gradient, Hessian, edf, nobs, n,
## fitted.values, df.residual:
fit <- clm.finalize(fit, y$weights, y$coef.names, y$aliased)
fit$tJac <- format_tJac(y$tJac, y$y.levels, y$alpha.names)
th.res <- formatTheta(fit$alpha, fit$tJac, y, y$control$sign.nominal)
## Check convergence:
conv <- conv.check(fit, control=y$control, Theta.ok=th.res$Theta.ok,
tol=y$control$tol)
print.conv.check(conv, action=y$control$convergence) ## print convergence message
th.res$Theta.ok <- NULL
fit <- c(fit, conv[c("vcov", "cond.H")], th.res)
fit$convergence <- conv[!names(conv) %in% c("vcov", "cond.H")]
fit <- fit[sort(names(fit))]
class(fit) <- "clm.fit"
fit
}
clm.finalize <- function(fit, weights, coef.names, aliased)
### extracFromFit
###
### distinguishing between par and coef where the former does not
### contain aliased coefficients.
{
nalpha <- length(aliased$alpha)
nbeta <- length(aliased$beta)
nzeta <- length(aliased$zeta)
nlambda <- length(fit$lambda)
ncoef <- nalpha + nbeta + nzeta + nlambda ## including aliased coef
npar <- sum(!unlist(aliased)) + nlambda ## excluding aliased coef
stopifnot(length(fit$par) == npar)
if(nlambda) aliased <- c(aliased, list(lambda = FALSE))
if(nlambda) coef.names <- c(coef.names, list(lambda="lambda"))
fit <- within(fit, {
coefficients <- rep(NA, ncoef)
## ensure correct order of alpha, beta and zeta:
keep <- match(c("alpha", "beta", "zeta", "lambda"), names(aliased),
nomatch=0)
aliased <- lapply(aliased[keep], as.logical)
for(i in names(aliased))
names(aliased[[i]]) <- coef.names[keep][[i]]
names(coefficients) <- unlist(coef.names[keep])
par.names <- names(coefficients)[!unlist(aliased)]
coefficients[!unlist(aliased)] <- par
alpha <- coefficients[1:nalpha]
if(nbeta) beta <- coefficients[nalpha + 1:nbeta]
if(nzeta) zeta <- coefficients[nalpha + nbeta + 1:nzeta]
names(gradient) <- par.names
dimnames(Hessian) <- list(par.names, par.names)
edf <- npar ## estimated degrees of freedom
nobs <- sum(weights)
n <- length(weights)
fitted.values <- fitted
df.residual = nobs - edf
## keep <- i <- fitted <- par.names <- par <- coef.names <- NULL
})
notkeep <- c("keep", "i", "fitted", "par.names", "par",
"coef.names")
fit[!names(fit) %in% notkeep]
}
|