1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344
|
#############################################################################
## Copyright (c) 2010-2022 Rune Haubo Bojesen Christensen
##
## This file is part of the ordinal package for R (*ordinal*)
##
## *ordinal* is free software: you can redistribute it and/or modify
## it under the terms of the GNU General Public License as published by
## the Free Software Foundation, either version 2 of the License, or
## (at your option) any later version.
##
## *ordinal* is distributed in the hope that it will be useful,
## but WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
## GNU General Public License for more details.
##
## A copy of the GNU General Public License is available at
## <https://www.r-project.org/Licenses/> and/or
## <http://www.gnu.org/licenses/>.
#############################################################################
## This file contains:
## The predict method for clm objects.
predict.clm <-
function(object, newdata, se.fit = FALSE, interval = FALSE,
level = 0.95,
type = c("prob", "class", "cum.prob", "linear.predictor"),
na.action = na.pass, ...)
### result - a list of predictions (fit)
### OPTION: restore names of the fitted values
###
### Assumes object has terms, xlevels, contrasts, tJac
{
## match and test arguments:
type <- match.arg(type)
se.fit <- as.logical(se.fit)[1]
interval <- as.logical(interval)[1]
stopifnot(length(level) == 1 && is.numeric(level) && level < 1 &&
level > 0)
if(type == "class" && (se.fit || interval)) {
warning("se.fit and interval set to FALSE for type = 'class'")
se.fit <- interval <- FALSE
}
cov <- if(se.fit || interval) vcov(object) else NULL
### Get newdata object; fill in response if missing and always for
### type=="class":
has.response <- TRUE
if(type == "class" && missing(newdata))
## newdata <- update(object, method="model.frame")$mf
newdata <- model.frame(object)
## newdata supplied or type=="class":
has.newdata <- !(missing(newdata) || is.null(newdata))
if(has.newdata || type=="class") {
if(has.newdata && sum(unlist(object$aliased)) > 0)
warning("predictions from column rank-deficient fit may be misleading")
newdata <- as.data.frame(newdata)
## Test if response is in newdata:
resp <- response.name(object$terms)
## remove response from newdata if type == "class"
if(type == "class") newdata <- newdata[!names(newdata) %in% resp]
has.response <- resp %in% names(newdata) ## FALSE for type == "class"
if(!has.response) {
## fill in response variable in newdata if missing:
ylev <- object$y.levels
nlev <- length(ylev)
nnd <- nrow(newdata)
newdata <-
cbind(newdata[rep(1:nnd, each=nlev) , , drop=FALSE],
factor(rep(ylev, nnd), levels=ylev, ordered=TRUE))
names(newdata)[ncol(newdata)] <- resp
}
### Set model matrices:
if(is.null(attr(object$terms, "predvars")))
warning(paste0("terms object does not have a predvars attribute: ",
"predictions may be misleading"))
mf <- model.frame(object$terms, newdata, na.action=na.action,
xlev=object$xlevels)
## model.frame will warn, but here we also throw an error:
if(nrow(mf) != nrow(newdata))
stop("length of variable(s) found do not match nrow(newdata)")
## check that variables are of the right type:
if (!is.null(cl <- attr(object$terms, "dataClasses")))
.checkMFClasses(cl, mf)
## make model.matrix:
X <- model.matrix(object$terms, mf, contrasts = object$contrasts)
Xint <- match("(Intercept)", colnames(X), nomatch = 0L)
n <- nrow(X)
if(Xint <= 0) X <- cbind("(Intercept)" = rep(1, n), X)
# if(object$control$sign.location == "negative") NOM[, -1] <- -NOM[, -1]
## drop aliased columns:
if(sum(object$aliased$beta) > 0)
X <- X[, !c(FALSE, object$aliased$beta), drop=FALSE]
## handle offset (from predict.lm):
### NOTE: Could factor the offset handling out in its own function for
### code clarity:
offset <- rep(0, nrow(X))
if(!is.null(off.num <- attr(object$terms, "offset")))
for(i in off.num) offset <- offset +
eval(attr(object$terms, "variables")[[i + 1]], newdata)
y <- model.response(mf)
if(any(!levels(y) %in% object$y.levels))
stop(gettextf("response factor '%s' has new levels",
response.name(object$terms)))
### make NOMINAL model.matrix:
if(is.nom <- !is.null(object$nom.terms)) {
## allows NAs to pass through to fit, se.fit, lwr and upr:
nom.mf <- model.frame(object$nom.terms, newdata,
na.action=na.action,
xlev=object$nom.xlevels)
## model.frame will warn, but here we also throw an error:
if(nrow(nom.mf) != nrow(newdata))
stop("length of variable(s) found do not match nrow(newdata)")
if (!is.null(cl <- attr(object$nom.terms, "dataClasses")))
.checkMFClasses(cl, nom.mf)
NOM <- model.matrix(object$nom.terms, nom.mf,
contrasts=object$nom.contrasts)
NOMint <- match("(Intercept)", colnames(NOM), nomatch = 0L)
if(NOMint <= 0) NOM <- cbind("(Intercept)" = rep(1, n), NOM)
# if(object$control$sign.nominal == "negative") NOM[, -1] <- -NOM[, -1]
alias <- t(matrix(object$aliased$alpha,
nrow=length(object$y.levels) - 1))[,1]
if(sum(alias) > 0)
NOM <- NOM[, !c(FALSE, alias), drop=FALSE]
}
### make SCALE model.matrix:
if(is.scale <- !is.null(object$S.terms)) {
## allows NAs to pass through to fit, se.fit, lwr and upr:
S.mf <- model.frame(object$S.terms, newdata,
na.action=na.action,
xlev=object$S.xlevels)
## model.frame will warn, but here we also throw an error:
if(nrow(S.mf) != nrow(newdata))
stop("length of variable(s) found do not match nrow(newdata)")
if (!is.null(cl <- attr(object$S.terms, "dataClasses")))
.checkMFClasses(cl, S.mf)
S <- model.matrix(object$S.terms, S.mf,
contrasts=object$S.contrasts)
Sint <- match("(Intercept)", colnames(S), nomatch = 0L)
if(Sint <= 0) S <- cbind("(Intercept)" = rep(1, n), S)
if(sum(object$aliased$zeta) > 0)
S <- S[, !c(FALSE, object$aliased$zeta), drop=FALSE]
Soff <- rep(0, nrow(S))
if(!is.null(off.num <- attr(object$S.terms, "offset")))
for(i in off.num) Soff <- Soff +
eval(attr(object$S.terms, "variables")[[i + 1]], newdata)
}
### Construct model environment:
tJac <- object$tJac
dimnames(tJac) <- NULL
env <- clm.newRho(parent.frame(), y=y, X=X,
NOM=if(is.nom) NOM else NULL,
S=if(is.scale) S else NULL,
weights=rep(1, n), offset=offset,
S.offset=if(is.scale) Soff else rep(0, n),
tJac=tJac, control=object$control)
setLinks(env, link=object$link)
} ## end !missing(newdata) or type == "class"
else {
env <- get_clmRho.clm(object)
## env <- update(object, doFit=FALSE)
}
env$par <- as.vector(coef(object))
env$par <- env$par[!is.na(env$par)]
### OPTION: Are there better ways to handle NAs in coef?
## if(length(env$par) != ncol(env$B1))
## stop(gettextf("design matrix has %d columns, but expecting %d (number of parameters)",
## ncol(env$B1), length(env$par)))
## Get predictions:
pred <-
switch(type,
"prob" = prob.predict.clm(env=env, cov=cov, se.fit=se.fit,
interval=interval, level=level),
"class" = prob.predict.clm(env=env, cov=cov, se.fit=se.fit,
interval=interval, level=level),
"cum.prob" = cum.prob.predict.clm(env=env, cov=cov,
se.fit=se.fit, interval=interval, level=level),
"linear.predictor" = lin.pred.predict.clm(env=env, cov=cov,
se.fit=se.fit, interval=interval, level=level) ##,
## "eta" = eta.pred.predict.clm(env=env, cov=cov,
## se.fit=se.fit, interval=interval, level=level)
)
### Arrange predictions in matrices if response is missing from
### newdata arg or type=="class":
if(!has.response || type == "class") {
pred <- lapply(pred, function(x) {
x <- matrix(unlist(x), ncol=nlev, byrow=TRUE)
dimnames(x) <- list(1:nrow(x), ylev)
x
})
## if(type == "eta")
## pred <- lapply(pred, function(x) {
## x <- x[, -nlev, drop=FALSE]
## colnames(x) <- names(object$alpha)
## })
if(type == "class")
pred <- lapply(pred, function(x) {
factor(max.col(x), levels=seq_along(ylev), labels=ylev) })
}
### Filter missing values (if relevant):
if(missing(newdata) && !is.null(object$na.action))
pred <- lapply(pred, function(x) napredict(object$na.action, x))
return(pred)
}
prob.predict.clm <-
function(env, cov, se.fit=FALSE, interval=FALSE, level=0.95)
### Works for linear and scale models:
### env - model environment with par set.
### cov - vcov for the parameters
{
## evaluate nll and grad to set dpi.psi in env:
clm.nll(env)
pred <- list(fit = as.vector(env$fitted))
if(se.fit || interval) {
se.pr <- get.se(env, cov, type="prob")
if(se.fit)
pred$se.fit <- se.pr
if(interval) {
pred.logit <- qlogis(pred$fit)
## se.logit <- dlogis(pred$fit) * se.pr
se.logit <- se.pr / (pred$fit * (1 - pred$fit))
a <- (1 - level)/2
pred$lwr <- plogis(pred.logit + qnorm(a) * se.logit)
pred$upr <- plogis(pred.logit - qnorm(a) * se.logit)
}
}
return(pred)
}
eta.pred.predict.clm <-
function(env, cov, se.fit=FALSE, interval=FALSE, level=0.95)
{
## clm.nll(env)
pred <- list(eta = c(with(env, B1 %*% par[1:n.psi])))
if(se.fit || interval) {
se <- get.se(env, cov, type="lp")
if(se.fit) {
pred$se.eta <- se[[1]]
}
if(interval) {
a <- (1 - level)/2
pred$lwr1 <- env$eta1 + qnorm(a) * se[[1]]
pred$upr1 <- env$eta1 - qnorm(a) * se[[1]]
}
}
pred
}
lin.pred.predict.clm <-
function(env, cov, se.fit=FALSE, interval=FALSE, level=0.95)
### get predictions on the scale of the linear predictor
{
## evaluate nll and grad to set dpi.psi in env:
clm.nll(env)
pred <- list(eta1=env$eta1, eta2=env$eta2)
if(se.fit || interval) {
se <- get.se(env, cov, type="lp")
if(se.fit) {
pred$se.eta1 <- se[[1]]
pred$se.eta2 <- se[[2]]
}
if(interval) {
a <- (1 - level)/2
pred$lwr1 <- env$eta1 + qnorm(a) * se[[1]]
pred$lwr2 <- env$eta2 + qnorm(a) * se[[2]]
pred$upr1 <- env$eta1 - qnorm(a) * se[[1]]
pred$upr2 <- env$eta2 - qnorm(a) * se[[2]]
}
}
return(pred) ## list with predictions.
}
cum.prob.predict.clm <-
function(env, cov, se.fit=FALSE, interval=FALSE, level=0.95)
{
## evaluate nll and grad to set dpi.psi in env:
clm.nll(env)
pred <- list(cprob1=env$pfun(env$eta1), cprob2=env$pfun(env$eta2))
if(se.fit || interval) {
se <- get.se(env, cov, type="gamma")
if(se.fit) {
pred$se.cprob1 <- se[[1]]
pred$se.cprob2 <- se[[2]]
}
if(interval) {
a <- (1 - level)/2
pred$lwr1 <- pred$cprob1 + qnorm(a) * se[[1]]
pred$lwr2 <- pred$cprob2 + qnorm(a) * se[[2]]
pred$upr1 <- pred$cprob1 - qnorm(a) * se[[1]]
pred$upr2 <- pred$cprob2 - qnorm(a) * se[[2]]
}
}
return(pred)
}
get.se <- function(rho, cov, type=c("lp", "gamma", "prob")) {
### Computes standard errors of predicted probabilities (prob),
### cumulative probabilities (gamma) or values of the linear
### predictor (lp) for linear (k<=0) or location-scale models
### (k>0).
rho$xcovtx <- function(x, chol.cov) {
## Compute 'diag(x %*% cov %*% t(x))'
diag(x %*% crossprod(chol.cov) %*% t(x))
## colSums(tcrossprod(chol.cov, x)^2)
}
rho$type <- match.arg(type)
ind <- seq_len(rho$n.psi + rho$k)
rho$chol.cov <- try(chol(cov[ind, ind]), silent=TRUE)
if(inherits(rho$chol.cov, "try-error"))
stop(gettext("VarCov matrix of model parameters is not positive definite:\n cannot compute standard errors of predictions"),
call.=FALSE)
clm.nll(rho) ## just to be safe
with(rho, {
### First compute d[eta, gamma, prob] / d par; then compute variance
### covariance matrix of the observations and extract SEs as the
### square root of the diagonal elements:
if(type %in% c("lp", "gamma")) {
D1 <- B1
D2 <- B2
if(k > 0) {
D1 <- cbind(D1/sigma, -S*eta1)
D2 <- cbind(D2/sigma, -S*eta2)
}
if(type == "gamma") {
p1 <- if(!nlambda) dfun(eta1) else dfun(eta1, lambda)
p2 <- if(!nlambda) dfun(eta2) else dfun(eta2, lambda)
D1 <- D1*p1
D2 <- D2*p2
}
se <- list(se1=sqrt(xcovtx(D1, chol.cov)),
se2=sqrt(xcovtx(D2, chol.cov)))
}
if(type == "prob") {
p1 <- if(!nlambda) dfun(eta1) else dfun(eta1, lambda)
p2 <- if(!nlambda) dfun(eta2) else dfun(eta2, lambda)
C2 <- if(k <= 0) B1*p1 - B2*p2 else
cbind(B1*p1/sigma - B2*p2/sigma,
-(eta1 * p1 - eta2 * p2) * S)
se <- sqrt(xcovtx(C2, chol.cov))
}
})
rho$se
}
|